CURRENT & VOLTAGE

Market research
- 31 lab supplies

Build this
-Smart SMPSU
-PC supply tester

Experiment:
PIC 18F board

New:
Delphi programming course
PAGM
The leaders in PIC development

FROM
£99

EASE OF USE

AUTOMATION

SCRIPTABILITY

♦ All you need to get started with PIC
♦ Industry standard/quality board
♦ Open the box and get coding
♦ Available with C compiler or use our PicScript to write programs using simple commands...

NO ASSEMBLER,
NO COMPILER,
JUST WRITE AND RUN

PicDev Board with PicScript
£99.00 (plus p+p)
This is a complete development suite for the novice or non programmer.
It is shipped with:
- PicDev Board
- PicShell and PicScript software
- Breakout board
- Cables
- Example scripts

Both items require
- PC with serial port available
- Power supply adapter

To order:
www.pagm.co.uk

PicDev Board with C Compiler
£165.00 (plus p+p)
This is a complete development suite for the more advanced programmer.
It is shipped with:
- PicDev Board
- PicShell and PicScript software
- C compiler
- Breakout board
- Cables
- Example scripts
- ICD1

sales@pagm.co.uk
Tel: +44 (0)1792 891927
Electronics – from Australia??!!
You have to be joking?

No, not at all!
The hobby electronics market in Australia has been historically very strong with large numbers of enthusiasts serviced by dynamic electronic magazines and vigorous commercial suppliers.
The most dominant company in this “Down Under” market, Jaycar Electronics, is now in a position to offer its great range of products to a wider audience, thanks to the Internet.

Concerned about dealing on the Internet?
Well, you should be. At the same time, the amount of legitimate internet trade exceeds the fraudulent trade by millions and millions to one. World internet trade today easily exceeds the Gross National Product of many large countries!
Jaycar has been doing business on the Internet now for over 10 years. The thousands of happy repeat customers on our files is a testimony to how safe it can be when you deal with a reliable supplier like us. Worried about freight costs? NO NEED with our great rates.

2004 Catalogue - all 424 pages
We have printed this year our Jaycar 2004 catalogue in UK pounds. It is crammed packed with over 6000 exciting products. You can get one FREE by logging on to our website and filling out the catalogue request form at www.jaycarelectronics.co.uk/catalogue

We Stock:
• A huge range of exciting kits
• A great range of robotic components
• The best range of electronic components
• The largest single-source range of gadgets
• Security, Surveillance, Audio/Video, Lighting, Computer & Telecoms Parts etc.

Check our website!
• Entire Jaycar 2004 Catalogue on-line – over 6000 products.
• 128-bit Secure on-line ordering – safe & secure.
• Express ordering.
• Search by category, keyword or catalogue number, & advanced search.
• Over 3500 product datasheets & application notes available on-line.

High performance Electronic Projects for Cars Book – Silicon Chip Publications
(Australia's Leading Electronic Hobbyist Magazine Publisher)
BS-5080 £6.35.
All the instruction, and more! It shows, in full colour, the constructed modules, has colour overlay diagrams, detailed build guides, and fitting instructions. It also includes chapters on how engine management works, advanced engine management, electronic car systems like ABS and traction control, DIY electronic modification, and more! It is a definitive must-have if you are building any of these kits, or would just like to know how your car's electronics work.
Over 150 pages!

A Cheap Nitrous Fuel Mixture Controller
KC-5382 £7.25
Nitrous oxide systems can be expensive to set up, but now you can do it for much less. This project pulses a fuel injector at a preset rate, adding a fixed amount of nitrous fuel when you activate it. It will save you a bundle on dedicated fuel solenoids and jets. It can also be used to control electronic water pumps, cooling fans, and more. Kit supplied with PCB and all electronic components. Please check local laws regarding the use of Nitrous Oxide systems in your vehicle.

Theremin Synthesiser
AM-4025 £27.25
This is a built up Theremin from a Jaycar kit. The Theremin is a weird musical instrument that was invented early last century but is still used today. The Beach Boys hit “Good Vibrations” featured the Theremin. You can have one of these kits (cat no. KC-5295) for £12.95. All kits have first class instructions written in clear English text with plenty of illustrations and component identification.

www.jaycarelectronics.co.uk
0800 032 7241
(Monday - Friday 09.00 to 17.30 GMT + 10 hours only)
For those that want to write:
100 Silverwater Rd Silverwater NSW 2128 Sydney Australia
DrDAQ Data Logger

- Low cost - under £60
- Built in sensors for light, temperature and sound (level and waveforms)
- Use DrDAQ to capture fast signals
- Outputs for control experiments
- Supplied with both PicoScope (oscilloscope) and PicoLog (data logging) software

For more information on DrDAQ, please visit:

www.picotech.com/drdaq112

PC Oscilloscopes

- Scope and spectrum analyser functions
- A fraction of the cost of benchtop scope
- Save multiple setups, for ease of use
- Save, print and e-mail your traces
- FREE technical support for life
- FREE software and upgrades
- Automated measurements

For more information on our scopes, please visit:

www.picotech.com/scope241

Tel: 01480 396395 Fax: 01480 396296 E-mail: sales@picotech.com
Welcome to Elektor's first issue for the year 2005. Below is our forward publishing plan agreed upon after much debate between various staff. Authors, free-lance designers and advertisers are expressly invited to contribute to these issues by sending relevant article proposals, suggestions for practical projects or press releases to the Editor.

January 2005
POWER SUPPLIES. Benchtop and lab power supplies examined by a team of test engineers.

February 2005
WIRELESS. Various methods for wireless data communications. Tips and solutions to problems.

March 2005
SOUND. Sound amplification, compression technologies (MP3), sound pressure measurement and anti-sound systems.

April 2005
MICROCONTROLLERS. Special programming languages, tools and development kits for microcontrollers.

May 2005
SENSORS. Different types of sensor and associated measurement techniques. Comprehensive solutions and applications (including automotive).

June 2005
ELECTRONICS AND THE ENVIRONMENT. Solar panels with associated control electronics.

July/August 2005
SUMMER CIRCUITS DOUBLE ISSUE. More than 100 small circuits, design ideas and tips. Buying components: overview of suppliers and search methods.

September 2005
TEST AND MEASUREMENT. Test equipment examined by a team of test engineers.

October 2005
SECURITY. Protecting secure information (fingerprint and iris scanning), tracing bugs and protecting homes and buildings.

November 2005
ELECTRONICS SOFTWARE. Design and simulation programs for electronics engineers.

December 2005
OPTOELECTRONICS. Displays, now and in the future (LEDs, plasma, TFT, etc.).

Jan Buiting, Editor
Power to Spare

The fact that a lab supply is part of the standard equipment for every workstation is demonstrated by the enormous number of products available. In this article, we examine a selection of lab supplies, describe the various options and features, and point out what you should look for when buying a power supply.

Cuk Converter

The great thing about the Cuk Converter is the absence of particularly exotic components. That means we can right away take the plunge with a ‘heavy-duty’ dc converter, which is ideal for use with fluctuating energy sources such as solar systems.

Informative Articles

- 12 Power to Spare
- 22 Cuk Topology
- 54 Delphi for Electronic Engineers (1)
- 62 Power Supply Design
- 70 inside out: Power Outlet LAN
- 73 retronics: Junior Computer

Regulars

- 5 Foreword & Colophon
- 8 Mailbox
- 10 News & New Products
- 78 Quiz'away
- 82 Readers Services
- 84 Sneak Preview
- 84 Index of Advertisers
Contents

34 PIC18F Development Board

Peter Moreton’s project continues a fine tradition of Elektor Electronics microcontroller articles, and follows in the lineage of the popular PICee board, AVRee and others. The board Peter describes employs the most recent and powerful of Microchip’s PIC family, the ‘18F’ series, and specifically, the PIC18F452.

46 ATX Power Supply Tester

It isn’t that easy to check if a second-hand ATX style PC power supply still works properly. This dedicated tester makes that job quick and straightforward. All outputs from the power supply can be tested under load and any deviations from the nominal values are shown on six LEDs.

54 Delphi for Electronic Engineers (1)

We kick off a series about programming in Delphi, which concentrates on the practical side of programming and how it can interact with hardware. As an example, how would you write a Delphi program under Windows and then transfer it to an IC to make an autonomous Delphi controller?

Construction Projects

26 Cuk Converter
34 PIC18F Development Board
42 Whistle Beacon
46 ATX Power Supply Tester
64 Intelligent Clap Switch
69 start here:
 Low-cost RS232 to RS485 Converter
 DS1320 Real-time Clock
76 kitchen table: Playful Lights
Fantastic electronics
Dear Editor — I believe my website http://www.circuit-fantasia.com presents a really novel concept in electronics presentation as an alternative to the classical approach. Here, the electronic circuits are not presented as ready-made circuit solutions. Instead, they are built systematically in consecutive units, every one new circuit based on the previous ones. The site is implemented as an interactive multimedia product consisting of tutorials, collections of circuits, basic principles and heuristic tools. It is intended for creatively thinking students, teachers, hobbyists and inventors.
Cyril Machkov (Bulgaria)

We've had a look at your website and found it to be very lively indeed; perhaps a bit too animated with so many visually distracting elements. Also, the overabundant use of sounds will need some getting used to. None the less, an inspired website!

Synchronize your clocks
Dear Jan — I am the author of the ‘Digital Alarm Clock’ article published in the February 2004 issue. It’s been a very rewarding experience having my project published in an ‘A Class’ magazine like Elektor Electronics and I plan to submit further articles in the near future.
Back to the Digital Alarm Clock project, I received several e-mails from readers over the past months suggesting changes to my original design. Some of them would require major modifications to the clock’s hardware and/or firmware which I respectfully declined to implement. On the other hand, some of them were relatively simple and I decided to put them together in one new firmware version. In summary, this new version will allow the unmodified hardware to do the following:

1. Operate with PIC16F628 instead of the PIC16F84A;
2. Give the user conditions to select 1 of 3 different snooze period durations;
3. Give the user conditions to make a coarse adjustment to the clock’s time base, compensating any major crystal oscillation frequency deviation.

I have sent you two files containing (1) the .asm file with the source code for this new version already tested on my prototype, and (2) a .doc file describing the clock’s operation to which I’ve added an ‘Appendix A’ describing the features added by the new version. The update will give readers a chance to stick to the original 84A based version or upgrade to the 628 version and add some more functionality to the clock.
Manuel C. Almeida (Brasil)

We are grateful to Mr. Almeida for this information. The updated files may be obtained from the Free Downloads section of our website, look for file number 030096-11.zip under February 2004 items

OTL Headphone Amplifier boxed ‘US style’
Dear Editor — please have a look at some pictures of my version of the OTL Headphone Amp I built from your article in the January 2004 issue. I have made some mods including using larger filter caps in filament and HV supply; moving transformers away from the PCB and using audiophile (Ceramic caps) and non-polar caps in the output circuit. All of this and other changes (including soft recovery rectifiers) created a very good sounding amp. With Telefunken tubes, the sound is that of the tube... (with a cheap 12AU7, it sounds OK); with the German ECC82, it sounds incredible. I hope you print the pictures, as it did not cast much to build this great sounding amp, and with the cocobola wood on the front, it looks high-end. The cost of building this amp was about US 120.
Rick Macdonald (USA)

Thanks Rick for sending the photographs across and compliments on your efforts in building this design.

Exploding bits
Dear Jan — I was appalled to see such a disregard for the personal safety of your readers in your the November 2004 Elektor. The article in question is the ‘Vehicle Battery Jogger’.
The statements in question are towards the end of the “Safety” section of the article. To say that the parts could go bang (i.e., explode) and then to suggest the circuit is put in a box is rather unprofessional to say the least. In circuits like this you must put in a device (e.g., slow blow fuse) that is designed to limit current and prevent a part exploding. DO NOT just try to contain the explosion in a box. Ideally this fuse needs to be near the battery and all conductors must be able to carry the fuse blow current. I expect a 5 amp slow blow fuse (or Polyswitch) would be able to cope with the short 40-A pulse, but you need to check this.

Clearly you have not seen the damage that an exploding high wattage resistor can cause, I've seen holes punched through 0.8-mm thick steel from shoddy soldering. (caused by a random failure and sloppy design practice). Do your designers expect readers to have the circuit enclosed in a box when testing it for the first time? Surely the first time it is switched on is the most likely time of failure! How is the reader supposed to check the voltages, as suggested, if it is not working and in a box? Replacing R8 with a high value (e.g. 100R) during test would be a good approach. A good designer thinks about how to test a circuit and how to test it safely! I also question the wire gauge used in the harness in the picture, this would surely melt if the circuit failed. Incidentally I do like the new magazine style and… I’ve been reading Elektor since 1975.

Alan (UK)

You are absolutely right and I apologize for having overlooked the safety aspects of the project to the extent indicated. Most, if not all, problems may be solved by using a 1-A slow-blow fuse near the battery, in-line fuses and matching fuse holders as used in cars are suitable.

Improvised Atmelisp

In last November’s Mailbox I read a question on reading AT micros. I would like to add that I have produced a version of Atmelisp that offers additional functionality, while also allowing BASIC and BASIC-52 programs to be downloaded and uploaded. The program employs either two conventional serial ports or one USB and one RS232 port, where the USB port is used for data communications via a USB serial converter.

My program has been tested on Windows 98, ME and XP Home Edition. I am offering to supply the binaries to interested readers.

Piet van der Wal
(Netherlands)

Interested readers may request Mr. van der Wal’s contact details by sending an email to editor@elektor-electronics.co.uk, subject: atmelisp

The P89LPC900 (2)
November 2003, p. 30-35; 030161-2

In the circuit diagram and on the PCB, the RTS line is connected to pin 9 of 9-way sub-D connector K6. However, RTS should be connected to pins 7 and 8. The PCB layout has been modified accordingly (free download from our website).

Simple Infrared Control Extender
(July/August 2004, p. 56; 030103-1)

In the circuit diagram, T1 should be a type BD241, not BD240. The circuit symbol (npn) is correct.

Multi Programmer on USB
June 2004, p. 10-16

In the parts list on page 16, IC4 should read 74LS07, not 74LS04.

Mailbox Terms
- Publication of reader's correspondence is at the discretion of the Editor.
- viewpoints expressed by correspondents are not necessarily those of the Editor or Publisher.
- Correspondence may be translated or edited for length, clarity and style.
- When replying to Mailbox correspondence, please quote issue number.
- Please send your Mailbox correspondence to: editor@elektor-electronics.co.uk or Elektor Electronics, The Editor, PO Box 190, Tunbridge Wells TN3 7TW, England.

CORRECTIONS & UPDATES

Slave Flash for Digital Cameras
October 2004, p. 58-60; 040224-1
The parts list should be corrected to read
R1 = 3kO
R11 = 68kO
T4 = BC556

Thanks for your reply. Unfortunately, our design engineers say that the connector you describe is not the one they (and Mr. Austin) are looking for. The search continues...

1/2005 - elektor electronics
Essential Tools for dsPIC Development

Microchip's dsPIC DSC 16-bit (data) is a modified Harvard RISC machine that combines the control advantages of a high-performance 16-bit microcontroller with the high computation speed of a fully implemented digital signal processor (DSP) to produce a tightly coupled single-chip single-instruction stream solution for embedded systems design. All dsPIC DSCs integrate Flash program memory and most have EEPROM data storage.

Microchip now supplies a range of essential software development tools that offer a development-rich environment for the dsPIC® 16-bit Digital Signal Controller (DSC) architecture. The MPLAB® Integrated Development Environment (IDE) and the MPLAB In-Circuit Debugger 2 (ICD 2) and device programmer development platform now support the dsPIC product line.

MPLAB IDE
This tool offers a single development platform for all of Microchip’s PIC® microcontrollers and dsPIC DSCs. The MPLAB IDE is easy to use and has all of the enhanced edit/build/debug features an engineer would expect from a modern graphical development environment. The MPLAB IDE supports not only software, but also all of Microchip’s hardware and many third-party tools. In addition, the MPLAB IDE now includes an MPLAB ASM30 assembler and an MPLAB SIM30 simulator to support the dsPIC DSC architecture. It is available free from Microchip’s Web site at www.microchip.com/dspic.

MPLAB ICD 2
In Circuit Debugger
Early MPLAB ICD 2 users can upgrade their firmware from the Web at no charge to support dsPIC30F products. The MPLAB ICD 2 can connect to the target board via a 3-pin interface to be used as a programmer and serve as a low-cost, in-circuit debugger. The MPLAB ICD 2 is available in two forms, standalone (DV164005) available now for $159 or bundled with a dsPICDEM™ Starter Demonstration Board (DV164030) available now for $209.

C Compilers
The MPLAB C30 C compiler supports the dsPIC DSC product line. Compliant with American National Standards Institute (ANSI) standards, this product supports standard libraries for the dsPIC DSC.

It has multiple optimization levels for speed or performance, to take advantage of the attributes of the dsPIC DSC. The MPLAB C30 C compiler is available now for $895 USD or a time-limited version is available online for free. Other C compilers are available from third parties such as: IAR, HI-TECH and CCS.

Visual Device Initializer
The MPLAB Visual Device Initializer (VDI), a standard plug-in to the MPLAB IDE enables users to configure the entire processor graphically and generates C-callable assembly code with a click of a mouse. The MPLAB VDI does extensive error checking on assignments. It flags errors such as multiple peripherals assigned to one pin, memory and interrupt conflicts as well as selection of operating conditions. The generated code files are seamlessly integrated with the rest of the application code through the MPLAB Projects. Other features of this tool include the drop drop feature selection, one-click configuration and extensive error detection. This tool is available online for free at www.microchip.com/dspic.

Digital Filter Design Software Package
Digital Filter Design Tools
The Digital Filter Design Software Package simplifies the development of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) digital filters through a menu-driven and user intuitive interface. Desired filter-frequency specifications are entered and the tool automatically generates the dsPIC DSC filter code and coefficient files ready to use in the MPLAB Integrated Development Environment (IDE). The Digital Filter Design (DV300002) is now available from Microchip for $249 USD.

dsPICworks™ Visual Algorithm Analyzer
The dsPICworks Visual Algorithm Analyzer is used to develop and evaluate design alternatives in simulated frequency and time domain environments. It also supports an extensive set of signal generators, including basic sine, square and triangle wave generators. Advanced generators for window functions, unit step, unit sample, sinc and exponential plus noise functions can be added to any signal. The dsPICworks Visual Algorithm Analyzer can be used to define the desired filter and visually display the simulated performance. Then the companion product Digital Filter Design Tool can be used to generate dsPIC DSC code. The dsPIC-
works Visual Algorithm Analyzer is available for free from the Microchip Web site at www.microchip.com/dsPIC.

Real Time Operating Systems (RTOS)
Microchip has teamed up with CMX Systems to provide its customers with the newest RTOS tools for the dsPIC DSC architecture. CMX has created three RTOS solutions for the dsPIC DSC architecture, they include the full-featured CMX-RTX™ for the dsPIC30F, CMX-Tiny+™ for dsPIC30F, optimized for single chip applications, and the CMX-Scheduler™ for dsPIC devices. CMX-RTX for dsPIC DSCs is a fully preemptive multi-tasking operating system. It features one of the smallest footprints, fastest context switch times and lowest interrupt latency times. A truly preemptive RTOS allows interrupts to cause an immediate task switch. The CMX-RTX for the dsPIC DSC is available now from CMX.

CMX-Tiny+ for dsPIC DSC is a real-time kernel specially designed for those wishing to conserve on-chip RAM resources. CMX Tiny+ for the dsPIC DSC is available now from CMX.

The CMX-Scheduler for dsPIC DSCs is a real-time, preemptive scheduler that is the result of close collaboration with CMX and Microchip to provide a low-barrier-to-entry, limited-functionality way to manage application tasks. This software package can be downloaded at no charge from Microchip at www.microchip.com/dsPIC or from CMX at www.cmx.com.

Microchip Ltd, Microchip House, 505 Eksdale Road, Winchilsea Triangle, Wokingham RG41 3TU.
Tel. (+44) (0)118 921 5669.
Fax (+44) (0)118 921 5920.
Website: www.microchip.com.

New PC Oscilloscopes

Fluke has announced new enhancements to its dual-input ScopeMeter 190 Series of handheld oscilloscopes, increasing their power to analyse signals. Ideal for engineers working in service and engineering applications, all the colour and monochrome models now offer increased waveform resolution, providing even greater signal detail to help uncover anomalies. The 190C colour models also include Frequency Spectrum Analysis using Fast Fourier Transformation (FFT), as a standard feature, as well as two new triggering modes and 'cursor-limited' automatic measurement capabilities. With safety certification to 1,000 V Cat II and 600 V Cat III, Fluke ScopeMeters help users to safely solve virtually all electronics measurement problems encountered in the field.

The battery-powered Fluke ScopeMeter 190 Series offer up to 200MHz bandwidth and 2.5 GS/s real time sampling rates, the speed, performance and analysis power usually found only on high-end bench oscilloscopes. Bandwidths start at 60 MHz for the entry level 1928. The waveform memories on all models have been increased by 150%, allowing as many as 3000 samples per channel to be acquired. This greatly increased waveform resolution can be used with the new 16x Zoom function to find tiny details in a long waveform, for example the colour burst in a video signal or a single pulse in a complex data stream. The high-resolution waveforms can be transferred to a PC running optional FlukeView ScopeMeter software for documenting, archiving and analysis. All 190C Colour Scopemeters now include Frequency Spectrum Analysis using FFT. This makes it possible to identify individual frequency components in a signal, and to reveal the effects of vibration, signal interference or crosstalk. The standard 'Connect-and-View™' automatic triggering function greatly simplifies triggering, but since manual triggering is sometimes required, two new modes have been added to the 190C colour series. N-cycle triggering ensures stable 'live' images of a signal, for example, in frequency dividers and clocked digital systems. Dual-slope triggering enables triggering on both rising and falling edges, so that any edge will act as a triggering event - especially useful, for example, when measuring eye-patterns from digital streams. The 190C models now also feature automatic power and RMS measurements. These can be performed on a specific, user identified portion of a waveform, with the cursors used to define the time-window of interest. This is ideal for measuring power during the first mains cycle after closing the mains switch (to determine the inrush current). All ScopeMeter models have a large 320 x 240 pixel display, a fast display update rate, up to 1000 V independently floating isolated inputs, a facility for measurement of effective output voltages of variable speed motor drives and frequency inverters and a 5000 counts true-rms multimeter function. A free Fluke ScopeTraining CD contains self-paced oscilloscope Training Modules, one set based on general Oscilloscope Theory, the second set explaining best-practice in the use of Fluke ScopeMeters.

Fluke’s (UK) Ltd., 52 Hurricane Way, Norwich NR6 6JB.
Tel. (+44) 0207 9420790.
Website: www.fluke.co.uk.

1/2003 - elektronic.electronics
The faithful companion of every electronics fan is his laboratory power supply. It's always ready when you need it, it can provide the right voltage for every project, and it's just about indestructible. The fact that a lab supply is part of the standard equipment for every workstation is demonstrated by the enormous number of products available. In this article, we examine a selection of lab supplies, describe the various options and features, and point out what you should look for when buying a power supply.
The following pages present brief descriptions of no less than 31 laboratory power supplies. What all of them have in common is that they convert ac mains voltage into a clean, well-regulated dc voltage. At least that's the intention. It won't come as any surprise that not all of them can do this equally well, as you can see from the descriptions.

However, capacity is not the only thing that matters in choosing a suitable power supply, although it naturally forms the starting point.

Power

Nowadays, besides conventional (linear) power supplies, there are also various units available that use switched-mode conversion or a combination of these two conversion methods. Switched-mode power supplies have the advantage that they can provide higher efficiency at lower weight for the same amount of output power, since the necessary transformer is much smaller. Particularly with relatively high-power supplies, this can represent a considerable advantage.

However, before buying a power supply you should determine how much capacity the supply you're looking for should have, in terms of both voltage and current. If you only need to occasionally power relatively simple circuits, a voltage range of 0–12 V is often more than adequate, and a current rating of 1 A may cover all your needs. However, the required current rating can be quite different if you're working with (fast) digital circuits. Although such circuits often operate at fairly low voltages, the amount of current you need can quickly rise to impressive values. Naturally, the same is true for people who need a power supply specifically for working with car equipment. On the other hand, if you use the power supply for developing audio amplifiers, you will probably need high voltages as well as high currents.

It's a good idea to consider this question carefully before you buy, since regardless of whether it's a linear supply or a switched-mode supply, you naturally have to reach deeper in your pocket to get more power.

Bells and whistles

Perhaps you would rather spend the extra money on additional features, such as a second output to provide a negative voltage. That can be quite handy for powering circuits from a balanced supply (such as op-amp designs). In this case it's convenient if the two channels can be coupled (tracking mode), so both voltages can be set using a single knob.

There are also a few other important considerations and things to look for. Fine-adjustment controls for voltage and current, for example, are not a matter of course. If it's necessary to be able to precisely adjust these parameters for your application, we recommend selecting a power supply with digital controls for these adjustments.

Digital knobs are more convenient for making fine adjustments, since there's no mechanical limit on their range of adjustment. With an analogue potentiometer, at some point you simply run out of range, and then you have to resort to the coarse-adjustment knob. Of course, conventional potentiometers have the advantage of providing continuous adjustment, instead of using discrete increments like their digital counterparts. Incidentally, a ten-turn potentiometer is also a reasonable alternative, although it has the drawback that if a relatively large adjustment is necessary, you literally have to twiddle your fingers for a while before you get the voltage or current you want.

For adjusting the settings, you'll naturally need a voltmeter and an ammeter. All the supplies we examined here have this measurement capability on board. Most of them even have separate meters for voltage and current. The test team's preference is for LED displays, since these are generally easier to read than LC displays and can be read more quickly than moving-coil meters.

Remote control

It's also possible to make settings and read values remotely. The simplest method is to use an analogue voltage (or resistance) to control the output voltage. Other possible interfaces include RS232, USB, and of course the professional General Purpose Interface Bus (GPIB).

Surely it's not a problem with the power supply...
Some of the power supplies also perform the actual regulation at a distance. Such units have separate 'sense' terminals that are used to measure the voltage to be regulated at the load instead of at the supply output.

Outputs

As already mentioned, it can be convenient to have several outputs available. Besides units with several adjustable outputs, there are also power supplies available with one or more fixed-voltage outputs in addition to a 'normal' adjustable output. The fixed voltage is usually 5 V or 12 V.

Most lab supplies nowadays are fitted with sockets that accept banana plugs. The familiar combined banana jack and terminal post is slowly vanishing from the scene. This has to do with legal regulations related to shock protection. With certain power supplies (particularly if they are connected in series), the output voltage can be quite high. Under such conditions, terminal posts are naturally taboo. Incidentally, it's also convenient if the power supply has a separate switch for disabling the output, in order to prevent switch-on phenomena from reaching the connected circuitry.

Measured results

In order to judge the quality of the power supplies, we made measurements to check two important specifications for each unit: ripple and load regulation.

Most readers will probably know what ripple is: it's simply the residual ac voltage found at the output following conversion of the mains voltage. With a conventional power supply (transformer, rectifier, regulator circuit and associated filter), the ripple is usually a low-amplitude signal with a frequency of 100 Hz.

With a switched-mode power supply, the frequency of the ripple voltage is determined by the switching frequency used in the supply. This is also the case with supplies based on a combination of these two methods. Naturally, it goes without saying that the lower the ripple voltage is, the better (see also the Terminology inset below).

Load regulation

What's more interesting than the ripple is how a power supply handles a 'difficult' load. Ideally, the output voltage (or current) should remain constant under all conditions. None of the supplies can actually manage this in practice, but that's a perfectly normal situation. Most manufacturers also specify how well the power supply can handle a difficult load. This is usually given in the form of load regulation, which specifies the maximum change in the output level for a sudden change in the load.

Elsewhere in this issue, you can read more about our testing methods and how you can test power supplies yourself. Refer also to the Terminology inset in the survey section on the following pages.

Terminology

Conversion

Linear power supplies use a transformer to convert the mains voltage to a lower ac voltage, which is then rectified and filtered (smoothed). Switched-mode power supplies first rectify the mains voltage, and this rectified voltage is then converted into ac voltage at a relatively high frequency. This allows a much smaller transformer to be used for conversion to a lower voltage. These two techniques can also be used sequentially (mixed mode).

Output

In the output-range specification, the smallest possible increments for adjusting the voltage and current are shown in parentheses. Naturally, this does not apply to power supplies with analogue adjustment (using a potentiometer).

Ripple

The ripple, which is the residual ac voltage at the mains frequency or switching frequency, is given as an rms ac voltage measured with a bandwidth of 300 kHz. The inaccuracy of the meter used for the measurements (Fluke 187) is included in the stated values. The load and dc voltage for the measurement are stated in parentheses.

Load regulation

The stated values are maximum values. The following values are given in the order listed: the peak voltage of the overshoot when the load is disconnected (Uₚₚ), the duration of this overshoot (tₚₚ), and the (quasi)static deviation from the set value (Uₛₑₚ). These values include the inaccuracy of the instrument (Tektronix TD53020) and reading errors. The load consists of a fixed part and a variable having the same value, which is switched in parallel with the fixed part at a rate of 300 Hz with Uₑₛₑₚ = 0.33 Uₛₑₚ. The load regulation values cannot be directly compared with each other, since each of the supplies was set to a different voltage for this test. However, the individual values do provide an indication of the quality of the design and regulation of the power supply (lower values are better).

Recommended retail price (RRP)

Unless otherwise stated, this is the recommended retail price including VAT, as specified by the supplier who provided the unit.
Agilent 6642A
This PSU is clearly intended for use in special configurations. This is evident from the extremely rugged construction and the fact that the output terminals are located at the rear side.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0-20 V (≤ 5 mV) @ 0-10 A (≤ 3 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>numeric keypad and rotary control</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x LED display (I and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.3 mV RMS (8 Ω @ 1/3 V max)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 1.1 V / 50 μs (Vp / t) - 0.1 V (Vp) (8/4 Ω)</td>
</tr>
<tr>
<td>Interface</td>
<td>analogue, GPIB</td>
</tr>
<tr>
<td>Dimensions</td>
<td>70 x 124 x 350 mm (w x h x d) - 14.2 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£ 1547 (£ 2256)</td>
</tr>
</tbody>
</table>

Agilent E3616A
A extremely well finished, quiet PSU. Sense inputs are available to measure the voltage at the source. Provisions for slave/master mode.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.5 V (≤ 10 mV) @ 0-1.7 A (≤ 1 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>2 x 10-turn rotary control (I and V separately)</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x LED display (I and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.2 mV RMS (8 Ω @ 1/3 V max)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 0.8 V / 55 μs (Vp / t) - 7.0 V (Vp) (24/12 Ω)</td>
</tr>
<tr>
<td>Interface</td>
<td>analogue, GPIB</td>
</tr>
<tr>
<td>Dimensions</td>
<td>212 x 88 x 345 mm (w x h x d) - 5.5 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£ 397 (£ 579)</td>
</tr>
</tbody>
</table>

B+K Precision 1621A
Remarkably, different colours are used for the I and V displays.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.18 V (≤ 100 mV) @ 0.5 A (≤ 10 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>4 x rotary control (I and V, coarse/trim, analogue)</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x 3-digit LED display (I and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.1 mV RMS (8 Ω @ 1/3 V max)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 0.8 V / 40 μs (Vp / t) - 5.4 V (Vp) (8/4 Ω)</td>
</tr>
<tr>
<td>Interface</td>
<td>slave/master mode for series or parallel configuration</td>
</tr>
<tr>
<td>Dimensions</td>
<td>205 x 115 x 270 mm (w x h x d) - 7.4 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£ 131 (£ 191.25) (excl. VAT)</td>
</tr>
</tbody>
</table>

B+K Precision 1665
This supply features active temperature controlled cooling.

* Inadequate suppression of resonance effects at dynamic loads. Using our test method it is not possible to state the static error. However the error is invariably within the manufacturer’s specifications (533 mV).

<table>
<thead>
<tr>
<th>Conversion</th>
<th>switch mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.20 V (≤ 10 mV) @ 0-10 A (≤ 10 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>4 x rotary control (I and V, coarse/trim, analogue)</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x 4-digit LED display (I and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.3 mV RMS (8 Ω @ 1/3 V max)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 0.2 V / 1.5 ms (Vp / t) - see text below</td>
</tr>
<tr>
<td>Dimensions</td>
<td>205 x 115 x 275 mm (w x h x d) - 3 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£ 123 (£ 178.50) (excl. VAT)</td>
</tr>
</tbody>
</table>

Delta EST150
With this rugged supply, channels 1 and 2 may be coupled. It is also possible to operate several of these PSUs in a parallel or series configuration. In this way a maximum voltage of 600 V may be obtained; the output current is even infinite. Remarkably this PSU has passive cooling, i.e., no noisy fan is missing.

<table>
<thead>
<tr>
<th>Conversion 1 en 2</th>
<th>switch mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.20 V (≤ 6 mV) @ 0.25 A (≤ 0.75 mA) (0.03 %)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>4 x 10-turn rotary control (I and V separately)</td>
</tr>
<tr>
<td>Readout 1</td>
<td>4 x 3-digit LED display (I and V separately)</td>
</tr>
<tr>
<td>Output 2</td>
<td>0.10 V (≤ 3 mV) @ 0.5 A (≤ 1.5 mA) (0.03 %)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>2 x 10-turn rotary control (I and V separately)</td>
</tr>
<tr>
<td>Readout 2</td>
<td>2 x 3-digit LED display (I and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.3 mV RMS (8 Ω @ 1/3 V max)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 0.2 V / 0.5 ms (Vp / t) - 8.8 V (Vp) (8/4 Ω)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>222 x 132 x 180 (w x h x d) - 3.5 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£ 571 (£ 840)</td>
</tr>
</tbody>
</table>
Delta SM15-100

This supply is not only impressive in respect of performance, but also feature-packed. All interface options you can imagine are available. Naturally, power supplies of this type operate in series, parallel, master and slave mode. This rugged PSU is completed with a very quiet temperature controlled fan.

Although the results are well within the manufacturer’s ‘maximum error’ specifications (±50 mV), the load regulation is disregarded in this case. Considering the current capacity of this PSU, the ‘test load’ used was deemed insufficient to evaluate the supply’s behaviour within its normal operating range.

- **Conversion**: Switch-mode
- **Output**: 0-15 V [± 4.5 mV] @ 0-100 A (±30 mA)
 - (0.03 %)
- **Adjustment**: Rotary control (analogue)
- **Readout**: 2 x 4-digit LED display (I and V separately)
- **Ripple**: < 2.1 mV RMS (8 Ω @ 1/3 Vmax)
- **Load regulation**: See text below
- **Interface**: Analogue, RS232, GPIB, Ethernet
- **Dimensions**: 442 x 89 x 365 mm (w x h x d) – 10.6 kg
- **RRP**: £ 1108 (£ 1630)

Elipse EPS1803

Although the displays are a bit small, they do match the general size of the PSU, which will require little space on the workbench. The PSU has passive cooling and although the general layout is rudimentary (which also applies to the manual), the PSU does have a separate switch for its output, and ‘remote sensing’ terminals are available.

- **Conversion**: Linear
- **Output**: 0-18 V [± 10 mV] @ 0-3 A (± 10 mA)
- **Adjustment**: 1 x Rotary control (Fine), 2 x Rotary control (V: coarse)
- **Readout**: 2 x 4-digit LED display (I and V separately)
- **Ripple**: < 0.1 mV RMS (8 Ω @ 1/3 Vmax)
- **Load regulation**: < 2.0 V / 66 μs (Vp/Vs) – 19 mV (V/I) [6/4 Ω]
- **Interface**: Analogue
- **Dimensions**: 215 x 113 x 376 mm (w x h x d) – 5.0 kg
- **RRP**: £ 249 (£ 366.60)

Elektro Automatik PS3232-025

This supply lacks a ‘fine’ adjustment. Channels 1 and 2 may be configured in series or parallel mode.

- **Conversion**: Linear
- **Output 1 en 2**: 0-32 V [± 100 mV] @ 0-2.5 A (± 10 mA)
- **Adjustment**: 4 x Rotary control (I and V separately)
- **Readout**: 4 x 3-digit LED display (I and V separately)
- **Output 3**: 36 V @ 2 A
- **Adjustment**: Potentiometer
- **Ripple**: < 0.4 mV RMS (8 Ω @ 1/3 Vmax)
- **Load regulation**: < 0.5 V / 0.2 ms (Vp/Vs) – 60 mV (V/I) [8/4 Ω]
- **Dimensions**: 355 x 132 x 320 mm (w x h x d) – 13 kg
- **RRP**: £ 246 (£ 362)

ELV HY1503D

A simple power supply in a sturdy case. The displays have excellent legibility.

- **Conversion**: Linear
- **Output**: 0-15 V @ 0-3 A
- **Adjustment**: 2 x Rotary control (analogue)
- **Readout**: 2 x 3-digit LC display (I and V separately)
- **Ripple**: < 0.4 mV RMS (8 Ω @ 1/3 Vmax)
- **Load regulation**: < 0.5 V / 33 μs (Vp/Vs) – 9.5 mV (V/I) [8/4 Ω]
- **Dimensions**: 95 x 160 x 230 mm (w x h x d) – approx. 4.5 kg
- **RRP**: £ 42.50 (£ 62.50)

ELV PPS7330

This is the only supply in this overview that comes with a USB interface allowing the instrument to be programmed for timed operation using the associated software. This PSU features temperature controlled active cooling, a separate output on/off switch and a ‘store/recall’ function. At a lower price this PSU also comes as a kit (with or without USB).

- **Conversion**: Linear
- **Output**: 0-30 V [± 10 mV] @ 0-3 A (± 1 mA)
- **Adjustment**: 1 x Rotary control (digital in combination with pushbuttons)
- **Readout**: 2 x 4-digit LED display (I and V separately)
- **Ripple**: < 0.5 mV RMS (8 Ω @ 1/3 Vmax)
- **Load regulation**: < 0.3 V / 33 μs (Vp/Vs) – 27 mV (V/I) [8/4 Ω]
- **Interface**: USB (including software)
- **Dimensions**: 350 x 110 x 210 mm (w x h x d) – 3 kg
- **RRP**: £ 176 (£ 259)
ELV SNNT4005PC

This PSU is slow to respond to control changes. The 'moderate' impression created by this behaviour matches the rest of the instrument: the knobs do not turn smoothly and the rotary control jams. The fan was found to be very noisy. On the positive side, voltage, current and power limits may be set on the instrument, while the controls may be locked to prevent erroneous operation.

GMC LPS32K

Operating this PSU requires some getting used to, not just because only one rotary control is available. The PSU has a 'save/recall' function and a switch on the outputs. Passwords may be used to protect the controls against erroneous operation.

GW Instek GPS3030DDS

Several of these PSUs may be connected into a master/slave constellation. The supply was found to run fairly hot. Cooling is passive.

GW Instek PSP405

Cooling from a fan with three selectable levels. The output may be switched on and off with a separate button and the controls may be 'locked'.

Hameg HM7042-5

The control buttons are fairly small, but the PSU does have an extra button to switch the output on and off. The fan is quiet and temperature controlled.

Conversion mixed mode
Output 0.40 V (± 10 mV) @ 0.5 A (± 10 mA)
Adjustment rotary control (digital)
Readout backlit LCD display (V, I and P at 4 digits)
Ripple < 3.4 mV RMS (8 Ω @ 1/3 Vmax)
Load regulation < 1.0 V / 2.2 ms (Vp/p) – 0.2 V (Vp) [8/4 Ω]
Interface RS232 (optional)
Dimensions 275 x 135 x 300 mm (w x h x d) – approx. 3 kg
RRP £ 135 (£ 199)

Conversion switch-mode
Output 0.36 V (± 4 V; ± 1 mV, ± 4 V ± 10 mV) @ 0.3 A (± 1 mA)
Adjustment numeric keypad and 1x rotary control
Readout 2-line LCD display (V, I and P simultaneously; 3 digits each)
Ripple < 1.2 mV RMS (8 Ω @ 1/3 Vmax)
Load regulation < 1.9 V / 55 μs (Vp/p) – 26 mV (Vp) [8/4 Ω]
Interface RS232/RS485 (optional)
Dimensions 215 x 88 x 250 mm (w x h x d) – 6 kg
RRP £ 250 (£ 368)

Conversion linear
Output 0.30 V (±100 mV) @ 0.3 A (± 10 mA)
Adjustment 4 x rotary control (I and V separately, both with 'coarse' and 'fine')
Readout 2 x 3-digit LED display (I and V separately)
Ripple < 0.2 mV RMS (8 Ω @ 1/3 Vmax)
Load regulation < 2.0 V / 11 μs (Vp/p) – 22 mV (Vp) [8/4 Ω]
Interface analogue
Dimensions 128 x 145 x 285 mm (w x h x d) – 5 kg
RRP £ 179 (£ 264)

Conversion switch-mode
Output 0.40 V (± 10 mV) @ 0.5 A (± 2 mA)
Adjustment digital rotary control with 'fine' and 'coarse' mode
Readout backlit LCD display (with I and V in 4 digits)
Ripple < 2.2 mV RMS (8 Ω @ 1/3 Vmax)
Load regulation < 0.4 V / 0.8 ms (Vp/p) – 71 mV (Vp) [8/4 Ω]
Interface RS232
Dimensions 225 x 100 x 305 mm (w x h x d) – 4 kg
RRP £ 204 (£ 300)

Conversion mixed
Output 1 en 2 0.32 V (± 10 mV) @ 0.2 A (± 1 mA)
Adjustment 3 x rotary control (analogue, 'coarse'/fine', 1 x rotary control (analogue)
Readout 4 x 4-digit LED display (I and V separately)
Output 3 0.5.5 V @ 0.5 A
Adjustment 2 x rotary control (analogue, I and V separately)
Readout 2 x 4-digit LED display (I and V separately)
Ripple < 0.2 mV RMS (24 Ω @ 1/3 Vmax)
Load regulation < 0.2 V / 11 μs (Vp/p) – 10 mV (Vp) (24/12 Ω)
Dimensions 285 x 90 x 389 mm (w x h x d) – 7.4 kg
RRP £ 376 (£ 554)
Hameg HM7044

Despite the multitude of buttons and extensive features (including tracking and copying channel settings), this instrument remains easy to control thanks to a well designed user interface. The individual channels of this supply are also suitable for series and parallel operation. The quality of the load response cannot be expressed in numbers. Even if we disregard switchon and switch-off effects, at the load frequency used this supply has trouble getting back to the set value. The static error however remains within the manufacturer's specifications (100 mV).

<table>
<thead>
<tr>
<th>Conversion</th>
<th>mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 t/m 4</td>
<td>0-32 V (±10 mV) @ 0-3 A (±1 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>keypad and rotary control (digital)</td>
</tr>
<tr>
<td>Readout</td>
<td>8 x 4-digit LED display (l and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.4 mV<sub> RMS </sub> (8 Ω @ 1/3 V<sub> max </sub>)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>see text below</td>
</tr>
<tr>
<td>Interface</td>
<td>RS232</td>
</tr>
<tr>
<td>Dimensions</td>
<td>285 x 125 x 380 mm (w x h x d) – 8.5 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£1161 (€1708)</td>
</tr>
</tbody>
</table>

Hameg HM8142

With this supply, more than average attention has been given to the user interface. Moreover, this instrument offers a few extras like 'remote sense' mode, an optional external keypad and an output switch.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 t/m 4</td>
<td>0-30 V (±10 mV) @ 0-1 A (±10 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>2 x rotary control, pushbuttons for 'fine' adjustment</td>
</tr>
<tr>
<td>Readout</td>
<td>4 x digital (l and V separately)</td>
</tr>
<tr>
<td>Output 3</td>
<td>5 V @ 2 A</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 2.5 mV<sub> RMS </sub> (24 Ω @ 1/3 V<sub> max </sub>)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 1.6 V / 0.2 μs (V<sub> Lmax </sub>/V<sub> D </sub>) – 22 mV (V<sub> J </sub>) (24/12 Ω)</td>
</tr>
<tr>
<td>Interface</td>
<td>GPIB, RS232 (incl. software)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>285 x 85 x 365 mm (w x h x d) – 10 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£797 (€1173.92)</td>
</tr>
</tbody>
</table>

HQ-POWER PS603

This supply is 'basic' in every respect, for example the user manual consists of just two pages. The performance is however exemplary. Not available to the UK market because of incompatible mains plug.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1</td>
<td>0-30 V @ 2.5 A</td>
</tr>
<tr>
<td>Adjustment</td>
<td>2 x rotary control (analogue)</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x analogue (l and V separately)</td>
</tr>
<tr>
<td>Output 2</td>
<td>12 V @ 1 A</td>
</tr>
<tr>
<td>Output 3</td>
<td>5 V @ 1 A</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.2 mV<sub> RMS </sub> (8 Ω @ 1/3 V<sub> max </sub>)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 0.9 V / 77 μs (V<sub> Lmax </sub>/V<sub> D </sub>) – 19 mV (V<sub> J </sub>) (8/4 Ω)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>150 x 145 x 200 mm (w x h x d) – 2.8 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£61 (€89.95)</td>
</tr>
</tbody>
</table>

Lambda Genesys GEN6-200

The fan is fairly noisy, however this supply is designed for stacked use without space between units. This power supply is clearly intended for professional applications: the output terminals are located on the rear panel, the instrument is prepared for series and parallel configurations and the options for remote control are extensive.

* The load regulation is disregarded in this case. Considering the current capacity of this PSU, the 'test load' used was deemed insufficient to evaluate the supply's behaviour within its normal operating range/bandwidth.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>switch-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1</td>
<td>0-6 V (±10 mV) @ 0-200 A (±10 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>2 x digital rotary control (l and V separately, individual 'fine' mode)</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x 4-digit LED display (l and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.6 mV<sub> RMS </sub> (8 Ω @ 1/3 V<sub> max </sub>)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>see text below</td>
</tr>
<tr>
<td>Interface</td>
<td>analogue, RS232 en RS485 (GPIB optional)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>423 x 44 x 434 mm (w x h x d) – 8.5 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£1150 (€1692) (excl. VAT)</td>
</tr>
</tbody>
</table>

Lambda ZUP20-10

With this supply, provision is made to interconnect several identical instruments. The PSU has an active, controlled cooling. Apart from employing an 'overvoltage protection', users are able to set a lower limit as well ('underprotection'). The connecting terminals are located on the rear panel.

<table>
<thead>
<tr>
<th>Conversion</th>
<th>switch-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1</td>
<td>0-20 V (±100 mV) @ 0-10 A (±10 mA)</td>
</tr>
<tr>
<td>Adjustment</td>
<td>1 x digital rotary control</td>
</tr>
<tr>
<td>Readout</td>
<td>2 x 4-digit LED display (l and V separately)</td>
</tr>
<tr>
<td>Ripple</td>
<td>< 0.3 mV<sub> RMS </sub> (8 Ω @ 1/3 V<sub> max </sub>)</td>
</tr>
<tr>
<td>Load regulation</td>
<td>< 1.2 V / 30 μs (V<sub> Lmax </sub>/V<sub> D </sub>) – 24 mV (V<sub> J </sub>) (8/4 Ω)</td>
</tr>
<tr>
<td>Interface</td>
<td>analogue, RS232 en RS485 (GPIB optional)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>70 x 124 x 350 mm (w x h x d) – 2.8 kg</td>
</tr>
<tr>
<td>RRP</td>
<td>£652 (€959) (excl. VAT)</td>
</tr>
</tbody>
</table>
Motech LPS302

This power supply is clearly aimed at the industry. The desired current and voltage can only be adjusted with buttons, which is less convenient in situations requiring lots of adjustments. The active cooling is powerful at the cost of some added noise.

Motech PPS1002

The display is difficult to read at an angle, which can be a problem in certain lab configurations. This PSU is compatible with National Instrument's Labview and Measurement Studio. Calibration is an option and the supply offers 'remote sensing' functionality. The fan is not temperature-controlled and makes rather more noise than necessary when the PSU is not loaded.

Peaktech 1885

A pity the adjustment knob jams a little. This PSU did not strike us as professional although it does offer a lot of functionality. Bells and whistles include active temperature-driven cooling, 'save/recall' functionality for the settings, a 'lock' button (keyboard and rotary control protection) and a separate button that allows the output to be isolated or switched on.

Peaktech 6035D

A good enough supply with proper controls and fine legibility of the displays.

Rohde & Schwarz NGMD35

A no-frills power supply: the moving coil meters now look unusual but of course function just like their digital equivalents.
Toellner TOE8871

This 'pro' has huge terminals at the rear side — fortunately they also accept ordinary banana plugs. As a very handy feature, a click sound is produced by an internal loudspeaker when one of the controls is changed. This makes it easy to hear changes without having to look at the meter. It's ideal for high-end musical instruments, where connections for regulating the voltage supply output.

Conversion
- linear

Output
- 0.40 V (±10 mV) @ 0.50 A (±10 mA)

Adjustment
- 2 x digital rotary control

Readout
- 2 x 4-digit LED display (I and V separately)

Ripple
- < 0.4 mV RMS (8 Ω @ 1/3 V peak)

Load regulation
- < 1.3 % / 5.5 μA (V_L/I_L) = 19 mV (V_L) (8/4 Ω)

Interface
- analogue, RS232, GPIB

Dimensions
- 445 x 147 x 557 mm (w x h x d) — approx. 15 kg

RRP
- £ 1839 (£ 2705) (excl. VAT)

Toellner TOE8733-1

A solid and well-finished power supply that's beyond any reproach.

Conversion
- linear

Output 1 en 2
- 0.16 V (±10 mV) @ 0.2 A (±1 mA)

Adjustment
- 4 x 1-turn rotary control (I and V separately)

Readout
- 2 x LED display (I and V combined)

Output 3
- 0.7 V (±10 mV) @ 0.5 A (±1 mA)

Adjustment
- 2 x 1-turn rotary control (I and V separately)

Readout
- 1 x digital LED display (I and V combined)

Ripple
- < 0.1 mV RMS (8 Ω @ 1/3 V peak)

Load regulation
- < 0.4 V / 44 μA (V_L/I_L) = 4.4 mV (V_L) (8/4 Ω)

Interface
- optional

Dimensions
- 264 x 146 x 314 mm (w x h x d) — 8.6 kg

RRP
- £ 765 (£ 1125) (excl. VAT)

TTI E355P

Despite the fact that this supply has passive cooling, the cabinet does not run particularly hot. A switch is available for instant load isolation.

Conversion
- mixed

Output
- 0.35 V (±10 mV) @ 0.5 A (±10 mA)

Adjustment
- 3 x rotary control (I and separate 'fine' and 'coarse' control for V)

Readout
- 1 x 3-digit LED display (I), 1 x 4-digit LED display (V)

Ripple
- < 1.9 mV RMS (8 Ω @ 1/3 V peak)

Load regulation
- < 1.7 % / 44 μA (V_L/I_L) = 22 mV (V_L) (8/4 Ω)

Interface
- RS232 (incl. software and cable)

Dimensions
- 140 x 160 x 320 mm (w x h x d) — < 4.4 kg

RRP
- £ 335 (£ 494)

Vollcraft DPS2010

A small delay may be observed between operating the rotary control and the changed value on the display. This makes the supply a little difficult to control. A further peculiarity is that 'unlocking' the supply controls is barely noticeable when the keyboard is enabled. This makes unlocking haphazard and rather awkward. The output on/off switch however is very useful and handy.

Conversion
- mixed

Output
- 0.20 V (±10 mV) @ 0.10 A (±10 mA)

Adjustment
- rotary control (‘coarse’ and ‘fine’)

Readout
- backlit LCD display (I, V and P simultaneously)

Ripple
- < 1.1 % / 1.7 μA (V_L/I_L) = 22 mV (V_L) (8/4 Ω)

Interface
- RS232

Dimensions
- 275 x 135 x 300 mm (w x h x d) — 3 kg

RRP
- £ 142 (£ 209)

Vollcraft PS2403PRO

Although this PSU runs very hot (passive cooling), our general impression is positive even if the transformer was found to produce some hum.

Conversion
- linear

Output 1 en 2
- 0.40 V (±100 mV) @ 0.3 A (±10 mA)

Adjustment
- 1 x 1 rotary control, 2 x rotary control (‘coarse’ and ‘fine’)

Readout
- backlit LCD display (I and V displayed separately per channel)

Output 3
- 3.6 V @ 2 A

Adjustment
- potentiometer

Readout
- via separate monitor button on LCD display of channel 1 and 2

Ripple
- < 0.2 mV RMS (8 Ω @ 1/3 V peak)

Load regulation
- < 0.9 % / 0.2 ms (V_L/I_L) = 18 mV (V_L) (8/4 Ω)

Dimensions
- 380 x 138 x 280 (w x h x d) — 10 kg

RRP
- £ 146 (£ 215)
Xantrex XFR60-20

Unfortunately the fan inside this PSU is fairly noisy but that is not surprising in view of the massive power capacity and the enclosure of this professionally designed power supply. The input and output connections are located at the rear panel (screw clamps). Extra features include an (adjustable) overvoltage protection. The supply comes with a five-year warranty.

Elektor Electronics would like to thank the following companies for making demo power supplies available:

- Abtronix
- Agilent
- AirParts
- Conrad Electronic
- Delta Elektronika
- Ellipse
- EMV Benelux
- ELV Elektronik
- GMC-Instruments
- Hameg
- HeveDigiTap
- Heinze-Günter Lau
- MCU Technologies
- Printec
- Rohde & Schwarz
- Velleman

TII
- Agilent
- Lambda, Toelner
- Elektro Automatik, Voltcraft
- Delta
- Ellipse
- Xantrex
- EV
- GMC
- Hameg
- GW Instek
- Peaktech
- Motech
- BK Precision
- Rohde & Schwarz
- HQ-POWER

Appendix: PSU Regulation Tester

The measurement method for the ‘load regulation’ is illustrated in Figure 1. The power supply under test is adjusted to one third of the maximum output voltage. This setting guarantees that the power supply and its variable load are used within their normal operating areas. The load consists of a static part to which, under pulse control, an identical load is connected in parallel. The switching frequency is set at 300 Hz, a value obtained from experimentation. Although most supplies will be able to cope with the 300 Hz variable load, the frequency is high enough to give them a rough time. After all, such a load will typically cause an output signal that will closely resemble the one indicated in Figure 2. This image was produced using an AC-coupled oscilloscope — hence you will see the ‘altering voltage’ component resulting from the second load being switched on and off under pulse control. We first come across a peak as a result of the load being switched off (V_p). This peak is damped within a time t_p. Next, the voltage can be seen to sag a little when the load is switched on and rises gradually. However, until the load is switched off again, the output voltage does not return to the original value. The remaining difference is called V_p.

The screenshot shown in Figure 2 only serves to explain the measured parameters. Fortunately, in practice the ratios are different and t_p will be much shorter resulting in a smaller surface area under the peak(s). And that’s good news because the surface area determines the energy contained in the peak. The smaller the surface area, the better because this energy can damage, or in any case harm, the load connected to the PSU. This is crucial with, for example, digital circuitry; an integrated circuit operating at 3.3 V may not be powered at a much higher voltage for a considerable period.

Here, the ubiquitous BUZ11 is used but any reasonably compatible type will do just as well. We drove the FET gate with a positive voltage between 0 and 10 V by connecting a 300 Hz square-wave generator adjusted to an output level of 5 Vpp with a DC-offset of 2.5 V. Zener diode D1 protects the FET against a too high output voltage (accidentally) set on the PSU under examination.

(C02/27-1)
The topology of the Cuk converter was first published in the 1980s, but it is rarely encountered in practice even today. However, this circuit concept offers enticing advantages for many power supply applications.

The Cuk converter is a capacitively coupled converter that generates an adjustable output voltage and current by periodically charging a capacitor. As the circuit (in its simplest form) does not provide electrical isolation between the input and output, it is suitable for secondary-side switched-mode power supplies or chargers.

Symmetry

Figure 1 illustrates the operating principle of the Cuk converter. The output voltage can adjusted anywhere between 0 V and a several times the input voltage by varying the duty cycle of switch S. This circuit thus combines the characteristics of a step-down converter and a step-up converter, while using only a single semiconductor switch and just one inductor. This outstanding property gives designers access to a wide range of highly interesting applications. If the converter is used as a battery charger, a battery having any desired voltage can not only be charged from a 12-V storage battery, but also discharged back into the storage battery. It makes no difference whether the battery in question is (for example) a 6-V battery or a 60-V battery. When the battery is discharged, the energy is fed back into the original battery with a high level of efficiency, instead of being dissipated as heat in a resistor or semiconductor device in the usual manner. Not only does this save energy, it also allows batteries to be quickly discharged at high currents.

Another interesting application results from the symmetry of the circuit. If diode D is replaced by a second switch and FETs or IGBTs with integrated free-wheeling diodes are used in the implementation, the result is a bidirectional converter (Figure 2). When T1 is driven, energy is transferred from voltage source \(U_{in} \) to \(U_{out} \), while when T2 is driven, energy is transferred in the opposite direction. Here again the values of \(U_{in} \) and \(U_{out} \) are not important, and the desired current level is determined by the duty cycle of whichever transistor is being driven.

Voltage isolation

For certain applications, such as primary-side switched-mode power supplies, the input and output voltages must be isolated from each other. This is also possible with the Cuk converter. As shown in Figure 3, the input and output can be isolated using an additional capacitor and a high-frequency or 'planar' transformer. A planar transformer has a core that contains relatively little ferrite and has an extremely large cross section. Using such a transformer, it is possible to obtain winding voltages of 100 V or more, and 5 kW of power in a 150 g package can easily be achieved thanks to the small number of turns required at 500 kHz (see www.pyonigroup.com).

This version of the circuit also retains all the other properties. Any desired voltage ratio can be set using the turns ratio and capacitance ratio shown in the circuit diagram. In the isolated version of the circuit, the overall efficiency...
is lower due to the additional magnetisation losses and conversion losses in the transformer. An efficiency of more than 96% can easily be achieved by the circuit without a transformer, but 92% or better is still possible with a transformer.

Besides the fact that the circuit configuration is the same for all power levels, the Cuk converter can also be used over a wide range of powers. The topology is equally suitable for small power supplies in the watt range and larger power supplies in the kilowatt range.

Operation

To understand how the converter works, you need to have a basic understanding of how inductors behave. When a dc voltage is applied to an inductor, the current increases linearly from an initial value of zero with a slope \(di/dt = U/L \). When the voltage is switched off, the current decreases, again with a linear slope. This is accompanied by a negative voltage across the inductor.

As an inductor cannot accumulate a dc voltage, the magnitude of the negative voltage assumes a level such that the areas of the voltage-time rectangles \(F1 \) and \(F2 \) in Figure 4 are identical.

The negative voltage across the inductor depends on the duty cycle, which is the ratio of the 'on' and 'off' times of the switch. At a 50% duty cycle, the amplitudes of the applied and induced voltage are the same; below 50% the amplitude of the induced voltage is less than that of the applied voltage, and above 50% it is greater.

\[
U_{in} = \frac{(1 - a)}{a} U_{in}
\]

Very high negative voltages occur at large duty cycles. This must be taken into account during circuit design by selecting suitable semiconductor devices and limiting the maximum possible duty cycle.

These observations presume that there is a free-wheeling circuit that accepts the current from the inductor after the switch is opened. If such a circuit is not present, the amplitude of the voltage across the inductor will rise to such a high level that flashover will occur at the switch. Even in this case, the areas of \(F1 \) and \(F2 \) are still equal.

The allowable saturation inductance (which is proportional to the area of \(F1 \)) must also be taken into account in designing the inductor. If the saturation inductance is exceeded, the inductor loses its inductive properties and instead behaves like a short circuit. If this happens, the current no longer increases linearly, but instead rises to a value that is limited only by the ohmic resistance of the coil. This means that the risk of saturation does not depend on the power level, but only on the voltage and frequency.

In a Cuk converter, switch \(S \) is periodically closed and opened with a duty factor \(a \). When \(S \) is closed, the voltage across the inductor is equal to the input voltage. The behavior of the voltage and current are shown in Figure 5a. After \(S \) is opened, current \(i_S \) continues to flow through the free-wheeling diode \(D \) and charges capacitor \(C \) to \(U_{in} + U_{i} \), as shown in Figure 5b.

If switch \(S \) is now closed again, the capacitor at the output is charged to \(U_{C} = U_{i} \). As a result, the output voltage is equal to the inductor voltage shown in Figure 5b, which means the voltage during the free-wheeling interval. This voltage depends only on the duty cycle \(a \), and as previously stated, it can be adjusted to a value anywhere between 0 V and a several times the input voltage.

The circuit has the same form for all power levels. The amplitude of the output voltage can be considerably greater than that of the input voltage with a high duty cycle, while...
Slobodan M. Cuk

As a professor and head of the Power Electronics Group at the renowned California Institute of Technology (Caltech), Dr Slobodan Cuk (pronounce: "chuck") and his colleague Robert Middlebrook developed switched-mode power supply applications in the late 1970s based on a topology that was just as clever as it was novel. This 'CuKonverter' technology is distinguished by constant input and output currents, in which respect it resembles conventional dc converters. Since its invention, the CuKonverter has been marketed for industrial and military applications by the company TESLAco. Besides serving as head of this company, Dr Cuk still gives courses on the subject of power electronics and switched-mode converters.

His principal 'literary' work consists of three practically oriented volumes titled Advances in Switched-Mode Power Conversion, which contain the collected working papers of the Caltech Power Electronics Group. They are available from TESLAco (http://www.teslacm.com/teslacm.html).

Figure 5. Voltage and current curves of the Cuk converter.

The output current can be vastly greater than the input current with a low duty cycle. The currents and applied voltages that the switching transistor and diode have to handle must be taken into account in selecting suitable components and designing the circuit. Measures must also be taken to limit the maximum current and duty cycle, in order to protect the components under all load conditions.

See your design in print!

Elektor Electronics (Publishing)
are looking for
Freelance Technical Authors/Designers

If you have
* an innovative or otherwise original design you would like to see in print in Europe's largest magazine on practical electronics
* above average skills in designing electronic circuits
* experience in writing electronics-related software
* basic skills in complementing your design with an explanatory text
* a PC, email and Internet access for efficient communication with our in-house design staff

then do not hesitate to contact us for exciting opportunities in getting your designs published on a regular basis.

Elektor Electronics
K. Walraven, Head of Design Dept.
RO. Box 75, NL-6190-AB Beek, The Netherlands, Fax: (+31) 46 4370161
Email: k.walraven@segment.nl
FREE Layout Software

EASY To Use!
Very LOW Cost!
Extremely FAST Turnaround!

01 DOWNLOAD our free CAD software
02 DESIGN your two or four layer PC boards
03 SEND us your design with just a click
04 RECEIVE top quality boards in just days

expresspcb.com

Handyscope HS3 2 Ch
Resolution Menu - 12, 14 or 16 bits
Sample Rates - 5, 10, 25, 50, 100 Ms/s models

- Oscilloscope
- Spectrum Analyzer
- Voltmeter plus!
- Transient Recorder
- Arbitrary Waveform Gen.
- Two hi-z probes 1:1~1:10
- USB 1.1 or 2.0
- Windows OS- all

£435 ex VAT/pc

28 Stephenson Road, Industrial Estate, St. Ives, Cambs. PE27 3WJ
Telephone: 01480 300895 Fax: 01480 461584
info@itp101.com www.itp101.com www.tiepie.com
Cuk Converter

Georg Gerads

The operating principle of the Cuk Converter avoids the need for particularly exotic components. That means we can right away take the plunge with a ‘heavy-duty’ dc converter, which is ideal for use with fluctuating energy sources such as solar systems.
The Cuk Converter\(^1\) topology yields a theoretically infinite variety of currents and voltages. Consequently, all relevant parameters must be monitored, and conditions that could destroy the semiconductor devices used in the circuit must be avoided. The important parameters are the input current, the output voltage and the output current. Figure 1 shows how these quantities are measured. The voltage across the source resistor of the switching transistor (R1) is used to limit the input current \(i_{\text{IN}}\), and the short-circuit protection level. The output voltage \(U_o\) is regulated by monitoring the voltage \(U_{\text{ON}}\), obtained using voltage divider R3/R4, and the output current \(i_{\text{ON}}\) is measured by simply inserting a sense resistor (R2) in the output lead.

Measurement circuitry power supply

\(U_{\text{IN}}\) and \(i_{\text{ON}}\) are negative with respect to ground, so the circuit requires a bipolar power supply. If the Cuk Converter is operated from a transformer, the negative supply voltage can easily be generated using the capacitor charge-transfer arrangement shown in Figure 2. Besides the bridge rectifier and smoothing capacitor, this requires two additional diodes and capacitors. Of course, the negative supply can only power a light load, but that’s all we need here.

If the circuit is operated from a battery, the negative auxiliary voltage can be generated by using a simple charge pump to periodically transfer charge to and from a capacitor, as shown in Figure 3. In this case, the switch actually consists of an astable multivibrator followed by a power stage. The printed circuit board for the Cuk Converter is designed to accommodate both options and the unnecessary components can simply be omitted.

A control transformer with a secondary voltage of 24 VAC and a 500-VA power rating is a good choice for the power supply. Suitable types are readily available and quite inexpensive. Without a load, such a transformer will provide a voltage of around 35 V after rectification. This is also the upper limit for the input voltage of the two fixed voltage regulators.

Naturally, even higher secondary voltages can also be used. This improves the efficiency of the circuit, since the power stage can be operated with a smaller duty cycle and lower current levels. However, in this case you must do something to reduce the voltage at the regulator inputs, such as inserting Zener diodes in series with the input leads. These Zener diodes must be able to dissipate a rather hefty amount of power.

Bridge rectifier B1 also has to be able to dissipate a relatively large amount of power (as much as 15 W). The total thermal resistance to ambient for the high-power devices and heat sink should not exceed 1 K/W. It is recommended to fit the components to a heat sink, but if this is not possible, a small fan should be used.

Power section

The power section of the Cuk Converter (see Figure 4) corresponds to the block diagram in nearly all respects. Some of the components are present in duplicate or triplicate, in order to handle the rather high currents. The circuit’s high-power switching element is formed by two power MOSFETs made by IXYS, a California-based semiconductor manufacturer (see www.ixys.com/denrove.html for distribution information). The type IXYF30N30 transistor can be used with drain-source voltages up to 300 V and currents up to 90 A (at 25 °C), and it has an integrated source-drain diode with a recovery time less than 250 ns. The ‘on’ resistance of the drain-source channel is specified as 33 mΩ in the data sheet. In principle, it is also possible to use IGBTs rated at 25 A (at 150 mΩ and 3 V). Diodes D1 and D2 are DSEP6006A epitaxial soft-recovery diodes from the same manufacturer. They have a specified reverse blocking voltage of 600 V and a forward current rating of 60–70 A. Although this type of diode switches extremely fast (with a recovery time of only 35 ns), it avoids the severe current spikes generated by fast-recovery diodes. If you wish to use a different type, ensure that it has a recovery time of less than 50 ns and a

\(^1\) For good measure we should mention that Cuk converter is a trademark of TESLA’s company. Cuk is pronounced /kuːk/.

Cuk Converter specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Secondary-side switched-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology</td>
<td>Cuk</td>
</tr>
<tr>
<td>Input voltage</td>
<td>20–45 VDC</td>
</tr>
<tr>
<td>18–35 VAC</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>0–100 V</td>
</tr>
<tr>
<td>Output current</td>
<td>0–5 A</td>
</tr>
<tr>
<td>Power</td>
<td>500 W</td>
</tr>
<tr>
<td>Continuous power</td>
<td>(U_{\text{IN}} = 35 V) 500 W</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{IN}} = 30 V) 400 W</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{IN}} = 25 V) 300 W</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> 85%</td>
</tr>
</tbody>
</table>
The negative auxiliary voltage can be generated by a capacitive charge-transfer circuit...

Figure 2

or by using a simple charge pump.

Figure 3

forward current rating of at least 30 A. The transistors and diodes must have a specified maximum breakdown voltage of 300 V or more.

The capacitive coupling is provided by four MKT capacitors connected in parallel. 10 μF at 250 V is not exactly a standard catalogue item, but it is certainly available (Vishay 373 series; available from RS Components, Burndin and Spoerle).

Inductor

Unlike most comparable high-power switched-mode regulators, the design of the inductor is not critical with the Cuk Converter, since it conducts a continuous current instead of being switched. The Epco type E42/21/20 core, which is made from N27 core material, is quite suitable, readily available and a real bargain at less than 7 pounds (including mounting hardware). The core accessaries include a plastic coil former and a sheet-metal clamp for securing the core. In our lab prototype, the job was handled by an LCC type E-45220A core. Spacers cut from 1.5-mm PCB material create a gap with a width of 1.5 mm, which in the case of an E-section core corresponds to an air gap of 3 mm in the magnetic path. Type ETD49 and E47/20/16 cores are also suitable, but the base of the coil former for these types doesn’t match the circuit board layout.

Regardless of which type of core is used, 32 turns of 1-mm diameter RF litz (multi-stranded) wire must be wound on the former for each winding, with the wires for the two coils simply being wound in parallel. Solid enameled copper wire can also be used, but the insulation breakdown voltage of enameled copper wire is not all that high. Consequently, the primary winding should be wound first, followed by the secondary, and paper strips must be placed between the layers of the windings.

In either case, pay particular attention to the direction of the windings, since otherwise things will go bang.

Control loops

For monitoring the currents and voltages in the power section and driving the switching transistors, we use a type 3626 IC, which is available from several manufacturers (including TI and ST). Although this is a special-purpose IC, it is a well-proven industry standard and thus fairly well known. Detailed information for this IC is available in the manufacture’s data sheet, so here the block diagram of this pulse-width modulator IC (Figure 5) is sufficient for understanding how it works. The 3626 is a PWM controller for push-pull converters, so the drive signals at its outputs (OUT A and OUT B) are pulse-width modulated according to the value of the control variable. The output signals have a maximum duty cycle of 50 % less the dead time, with a phase offset of 180 degrees. Diodes D10 and D11 combine the two output signals. This yields a PWM signal with a duty cycle ranging from 0 to 100 %, less two dead-time intervals.
The internal output drivers obtain their operating voltage via VC (pin 14). As can be seen, R27 limits the current through these transistors to prevent them from becoming excessively saturated, so they won't generate undesirable current spikes during switching transients (both transistors 'on'). The internal transistors don't require a lot of current, since they only have to provide the base currents for a pair of external driver transistors (T3 and T4), which in turn drive the power MOSFETs (T1 and T2). The period of the oscillator is set to just under 20 μs (equivalent to 50 kHz) by C17 and R28, while R29 sets the dead time to 6 μs. The internal PWM latch is clocked by the oscillator, but it is also affected by the error amplifier (+ERR on pin 1) and the current sense inputs (+CS and -CS). The -ERR input is connected to COMP, so the error amplifier acts as a voltage follower. That's all we need here, since external opamps (IC1 and IC2) are used to amplify and condition the two measured variables U_{on}

Figure 4. The complete, detailed circuit diagram of the Cuk Converter.
and I_{cc} to suit the requirements of the 3526. This isn’t all that simple, since the measured quantities are negative with respect to ground and must be inverted before they can be used by the FWM controller IC.

The reference voltage output VREF (pin 18), which provides exactly +5 V, is used for the signal conditioning circuitry. Opamps IC1d and IC1a invert the reference voltage and allow setpoint values in the range of 0 to −5 V to be set by adjusting P1 and P2. The measured quantities, which represent the actual values, are amplified by a factor of −10 by IC1c (for the output current) and IC1b (for the output voltage) and summed with the setpoint voltages. Sense resistor R6 and voltage divider R4–R7 are dimensioned such that the voltage at the output of IC1b or IC1c is +5 V for an output current of 5 A or an output voltage of 100 V, respectively.

Each circuit has a control amplifier (IC2b or IC2c) at its output, and the output voltage of the control amplifier is regulated such that the sum of the negative setpoint value and the positive actual value is exactly zero. The two signals are ORed via D5 and D6, which causes the lower of the two voltages to reach the input to the error amplifier inside the 3526 and thus determine the duty cycle of the PWM modulator.

The 3526 input is connected via R20 to +5 V, which corresponds to the maximum duty cycle. The lowest voltage on the control amplifier outputs thus always dominates the control loop. The duty cycle always adjusts to meet the demands of whichever control ampli-

Figure 5. Internal configuration of the 3526.

Figure 6. A double-sided layout is used for the printed circuit board.
filter is effectively 'in the loop'. The two remaining opamps (IC2a and IC2b) are used as comparators to visually indicate when the upper voltage limit or upper current limit is reached. They allow the user to see whether the circuit is operating under voltage control or current control.

The measured quantity for the input current (i_{max}) is easier to handle. Here the 3526 provides an internal Schmitt trigger comparator with a 100-mV fixed reference voltage. If the measured voltage reaches this value (after being divided by R30/R31 and smoothed somewhat by C18), the comparator triggers a shutdown. The PWM modulator will not start up again until the measured voltage drops below 80 mV.

Finally, a soft-start function is implemented using R21, C14 and IC4b, and manual reset capability is provided by R22, S1 and IC4a. The outputs of the three two comparators are ORed together and connected to the Reset and Shutdown inputs of the 3526. Connecting these two pins together causes the IC to execute a soft start after each overcurrent event. A thermostatic switch (normally open) can be connected in parallel with S1 to monitor the temperature of the heat sink. A FTC thermistor could be used for the same purpose. Thermistors have extremely steep characteristic curves. For a type with a rated temperature of 60 °C, the resistance rises from a few ohms to the megohm range when the temperature increases from 50 °C to 70 °C. This means that any type with a rated temperature of 50–70 °C is suitable, such as the BS9901-D60-A40 or any other type with a '50', '60' or '70' in the middle of the type number.

The 3526 has internal undervoltage protection and overtemperature protection, which also trigger a shutdown.

Construction and alignment

A printed circuit board for this power range requires a carefully designed layout (Figure 6), which usually has to be double-sided due to the necessary ground-plane area. The measurement amplifiers, control circuitry and power circuitry are clearly separated from each other, and 'sensitive' connections are kept as short as possible and as broad as necessary. The large ground planes protect the measurement and control circuitry against undesirable electronic interference.

Before starting to fit the components to the board, place inductor TR1 aside, since it will only be fitted during the alignment process. You should fit feedback capacitors C9 and C11 for IC2c and IC2b, but immediately short them out by connecting short wire bridges across them (on the component side). Next you have to decide whether the negative auxiliary voltage should be generated by the transformer or the on-board charge pump. Fit the corresponding components, as well as all of the control electronics. Potentiometers P1 and P2 are connected using pin headers, wired such that they have minimum resistance when adjusted fully counter-clockwise. The LEDs can later be relocated to the front panel using pin headers as well. The ICs can be fitted in sockets. Pay attention to the correct orientation of the numerous diodes, the ICs and the small electrolytic capacitors. Fitting the components for the power section, including the AMP screw terminals for the input...
COMPONENTS LIST

Resistors:
R1, R2 = 210Ω
R3 = 0Ω1Ω 3W horizontal
R4, R5 = 68kΩ
R6 = 56kΩ
R7, R9, R10, R12, R13, R16, R17, R18, R20,
R24, R33, R36 = 10kΩ
R8 = 0Ω1Ω 3W horizontal
R11, R19, R31 = 1kΩ
R14, R15 = 100kΩ
R21, R23, R25, R26, R30 = 4kΩ
R27 = 100kΩ
R28 = 3kΩ
R29 = 12Ω
R32 = 6Ω
P1, P2 = 10kΩ mono potentiometer
P3, P4 = 100Ω preset

Capacitors:
C1, C2 = 10,000µF. 50V radial, 30mm, lead pitch 10mm
C3, C6 = 1µF, 250V MKT, 18x31.5mm, lead pitch 27.5mm (Vishay 373)
C7 = 1000µF 250V radial
C8, C12, C20, C23 = 220µF
C13, C19, C32 = 2µF 40V radial
C14, C16 = 1µF 63V radial
C15, C17 = 10µF
C18 = 3nF
C26, C28, C29 = 100nF
C30, C31 = 470µF 25V radial
C33, C34, C35 = 1nF

Semiconductors:
D1, D2 = DSEP60-06A (Infy)
D3, D7, D10, D11, D14, D15 = 1N4148
D8 = LED, green, low current
D9 = LED, yellow, low current
IC1, IC2 = T1074
IC3 = UC3526 (TI) or SG3526 (ST)
IC4 = LM324
IC5 = 761B with clip-on heatsink
T1, T2 = IXFO9030 (Infy)
T3, T5, T7, T8 = BC639
T4, T6 = BC640

Miscellaneous:
S1 = pushbutton and/or thermal fuse or PTC

and output voltages, should not present any problems. Bend the leads of the power semiconductors so they can later be attached to the heat sink.

At this stage, it is already possible to perform initial testing and alignment after a thorough visual examination. Connect a laboratory power supply (35 V, with the current limiting set to several tens of milliamperes) to the input terminals, and connect the two potentiometers to the pin headers. Now adjust the gain of the current control amplifier (using P3) and the voltage control amplifier (using P4) such that the voltage measured at pin 1 of the 3626 can be continuously adjusted from 0 V to 5 V using P1 or P2, respectively. After this, turn P2 fully clockwise and P1 fully counter-clockwise. Using an oscilloscope, check that the MOSFETs are being properly driven with a PWM signal having a frequency of approximately 40 kHz (as measured on R1 and R2). The duty cycle of this signal can be adjusted over the range of 0-90 % by rotating the current-limit potentiometer (P1).

The control amplifiers cannot presently regulate the loop, since capacitors C9 and C11 are shorted out and the loop is open because the inductor has not yet been fitted. As a result, the duty cycle can be directly adjusted using the potentiometers. Only something that can be controlled can also regulate a controller.

Now it's time to fit the inductor and attach the fully assembled board to the heat sink in 'piggy-back' fashion, as shown in the title photo for this article, using eight previously drilled and tapped holes in the heat sink. As the drain and cathode voltages of the power semiconductors are present on their cooling tabs, these components must of course be properly insulated from the heat sink using the standard methods.

This is a good time to fit the assembled module into a suitable enclosure along with its power supply, and then wire everything together except the mains transformer. Instead of using the transformer, you should first operate the circuit from a laboratory power supply with current limiting. Restricting the power reduces the risk of destroying any components if there is an assembly error.

The wiring and connectors used for the input and output must be able to handle the amount of power drawn or supplied by the Cuk Converter. Don't forget to turn P1 fully counter-clockwise and P2 fully clockwise (100-V setting)! Now we come to the serious work. Connect a hefty power resistor, an incandescent lamp or a halogen floodlight to the output to provide an output load, and connect a voltmeter to the output of IC1a. The output of IC2b will remain 'stuck' and cannot affect anything. Now slowly increase the load current from 0 to the maximum value by adjusting P1.

Next, perform the above procedure the other way around: first rotate P1 fully clockwise (5-A setting), and then use the voltage control (P2) to slowly increase the output voltage to its maximum value of 100 V. Naturally, a current of 5 A can only be achieved if the load resistance is not more than 20 Ω (100 V - 5 A), and 100 V can only be achieved if the load resistance is 20 Ω or more.

However, you're not finished yet, since only part of the circuit's control function is operating. Adjust both potentiometers to their minimum settings, and then cut away both wire bridges to enable operation with the full closed-loop control characteristic. Now slowly increase the setting of P1 again. If the inductor starts to make squealing noises, slightly reduce the gain of the control amplifier by adjusting P3 (the maximum current will still be 5 A). Finally, repeat this procedure for the voltage control stage.

Warning. The circuit generates dangerous voltages. No part must be touched when the circuit is in operation and all relevant electrical safety precautions should be observed.
FRUSTRATED!
Looking for ICs TRANSISTORS?
A phone call to us could get a result. We offer an extensive range and with a worldwide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 17 40 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BER BES BFT BFX BFY BLY BLX BS BR BRX BRY BS BSS BSF BSF BSM BSX BT BTA BTB BRW BU BUK BUT BUW BUX BUZ C3 CD CX CXX DDA DC DDI DM DS DTG DTM ECG HCF HD HF IE ICN ICM IRF J KA KIA LAL LB LC LD LIF LM M M5M MAB MAX MB MC MD MDJ MEJ MJF MM MN MPS MPSA MPSH MPSU MRD MRM NEX NP PA PAL PIC PN RC S SAA SAB SAD SAD SAD SDA SDG SL SN SO STA STK STR STRD STRM STS STY SVI TTA TTAG TBA TCC TCA TDA TDB TEA TEC TIP TIPL TEA TL TCE TCP TMS TPA U UA UAA UC UDN ULR UM UFP UPI UPM VFN X XR Z ZN

We can also offer equivalents (at customers' risk)
We also stock a full range of other electronic components

Mail, phone, Fax Credit Card orders and callers welcome

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway London NW2 3ET
Tel: 020 8452 0161 Fax: 020 8208 1441

www.cms.uk.com
see our web site for full details

CAMBRIDGE MICROPROCESSOR SYSTEMS LTD
Unit 17-18 Zone 'D' Chelmsford Rd. Ind. Est. Great Dunmow, Essex CM6 1XG
Telephone: 01371 875644 email: sales@cms.uk.com
PIC18Flash Dev

Continuing where the '16 series left off...

Peter Moreton
The development system described in this article continues a fine tradition of Elektor Electronics microcontroller articles, and follows in the lineage of the popular PICcee board, AVRee and others. The board described here employs the most recent and powerful of Microchip's PIC family, the '18F' series, and specifically, the PIC18F452.

The PIC18F452 has become the de facto standard part of the 18F series, and is an obvious choice for people wishing to move on from designs using the ubiquitous PIC18F84 and 18F877 devices.

PIC18Flash offers the usual development board features of a processor, clock, some LEDs, some pushbuttons, an interface to a standard 2x20 line LCD display, an RS232 port, a plastic ceramic sounder and DC power regulation. Special features are:

- On-board hardware for ICSP (In-Circuit Serial Programming)
- Power I/O for real-world devices such as solenoids, stepping and DC motors.
- An interface to the Microchip 'ICD-2' debugger

With this hardware, the free Microchip 'MPLAB' development environment and a free demonstration copy of the 'C18' compiler, you are able to develop PIC 'C' code on a standard PC, and upload it to the PIC18Flash board to build sophisticated control systems for many applications including robotics, home automation, security and more.

A 'C18' example program is provided, demonstrating how each subsystem of the PIC18Flash board is accessed from the 'C' environment. As a self contained development environment, the PIC18Flash board provides an excellent platform for educators and individuals wishing to enter the world of microcontrollers.

Circuit Description

The circuit diagram of the development system is shown in Figure 1. Much of the circuit techniques will be quite familiar to Elektor Electronics readers, and the 78xx-based power supplies (IC1: IC2, IC9) and MAX232 RS232 serial interface (IC5) constellations have appeared countless times beforehand.

The PIC18F452, IC6, is configured in a standard manner, with the possible exception of the secondary 32.768 kHz watch crystal, X1, being provided to allow real-time clock systems to be implemented without consideration of the master clock frequency. The master clock runs at 4 MHz (X2), giving a throughput of 1 MIPS, and this can be internally multiplied by a 4×PLL to 16 MHz, which results in a processor throughput of 4 MIPS. Users requiring still more performance can substitute a 10-MHz crystal, giving 10 MIPS when used with the 4×PLL.

The 4 MHz 'fosc' value is not chosen arbitrarily; this clock rate is a good 'fit' with the PIC's USART baud rate generator and enables the generation of RS232 data at 1.2 to 76.8 kbps with an accuracy of better than 0.16%.

Processor pins assigned to SPI and I2C communications are routed to header K8 for expansion purposes; it is intended that any add-on hardware would communicate solely by these protocols and any communication to a host computer would be via RS232. The SPI/I2C header also delivers a spare processor pin (W, pin 7 on K5) which can be used for example to bit-bang other protocols such as the Dallas One-Wire interface.

In order that the PIC18Flash can perform some real work, the basic board is equipped with several power devices intended to permit the control of relays, solenoids, lamps, DC motors and stepper motors. Two separately powered Infineon TLE4207 H-bridges, IC3 and IC4, are provided, which permit the bidirectional control of two DC motors, or one bipolar stepper motor. Two power MOSFET switches are also provided. Via connector K6, they can be used to control resistiveor inductive loads such as solenoids and lamps.

A pinheader, K7, for the ubiquitous 2732 character LCD module is provided, and this is configured as a standard 4-bit interface, with the only unusual feature being the use (via the RC2 line) of the PIC's PWM module to provide software control of display contrast.
Finally, an RJ-11 header, K2, is provided to enable the use of Microchip's ICD-2 in circuit programmer / debugger, which enables the target hardware to be debugged in real-time. The user should take care not to use the onboard (MTSP) programmer and the ICD-2 interface at the same time!

Introducing the MTSP programmer

An important feature of the PIC18Flash system is the provision of onboard programming electronics. This enables the user to flash the microcontroller without having to remove the PIC from its socket and load it into a standalone programmer. In 1986, the 'Tait Classic' programmer design was widely published, enabling the PIC16 series to be programmed using a PC parallel port and some simple software. Since then, many variations on the Tait theme...
have appeared, and several good software programmers have been written with (David) Tait hardware support. The original Tait design does not work correctly with the PIC18F series, so we present a new implementation of the Tait standard, compliant with the PIC18F and with a low component count. The design is called MTSP – ‘My Tait Serial Programmer’. (Note that ‘serial’ indicates that the hardware programs the PIC serially, using a PC parallel interface.)

The MTSP design criteria were:
- Must support HVP (high voltage programming). LVP (low voltage) programmers are easier to construct, but if the user inadvertently un-sets the LVP enable bit, then LVP is disabled and the part can only be reprogrammed in a HVP programmer.
- Must use a standard interface, and be supported by a good, public domain software programmer. MTSP implements the ‘Tait Classic’ or ‘Tait Serial’ interface and can be programmed using the freeeware ‘IC-Prog’.
- Must be able to remain in circuit during the program-test-debug cycle. MTSP tri-states FOD/POC and raises MCLR to allow the target processor to run while not in program mode. The MTSP port is accessed via ‘printer’ connector K4.

Printed circuit board assembly

The PIC18Flash board (Figure 2) uses a mixture of pin-thru-hole and SMD technologies in order to produce a PCB that is both compact and yet quite easy to assemble. Ready-made printed circuit boards for this project (double-sided, through-plated) are available from our Readers Services under no. 040010-1. All surface mount components are 1206 size or larger, and can be soldered using a fine soldering iron and tweezers. Similarly, there are several surface mount ICs to be fitted. It is advisable to assemble the PCB in the following sequence:

1. Power supply. Once the PSU parts are installed, test that 5 V and 12 V exist and the PSU LEDs D2 and D3 light up.
2. All SMD resistors, capacitors and remaining LED’s.
3. All small-outline ICs.
4. All remaining pin-thru-hole (lead) parts.

Figure 2. PCB artwork designed for the PIC18Flash board (board available ready-made).

COMPONENTS

LIST

Resistors:
All resistors SMD, case shape 1206
R1, R5, R7 = 680Ω
R6, R9, R21, R22 = 1kΩ
R8, R10 = 100Ω
R11, R13, R15, R17 = 47kΩ
R12, R18, R19, R20 = 1kΩ
R16, R17 = 10kΩ

Capacitors:
All capacitors SMD, case shape 1206, unless otherwise indicated
C2, C6, C21 = 100nF
C3 = 22μF 25V radial
C4, C8 = 0.1μF 25V radial
C9, C10 = 22μF 25V radial
C17, C18 = 15μF
C19, C20 = 22μF
C25 = 470μF 25V radial

Semiconductors:
D1, D11 = IN4001
D2, D3, D4, D10 = LED
D4, D5, D6, D11 = 10MΩ060N
T1, T2 = IRFU24N
T3, T4 = 8S170
IC1 = 7805

IC2, IC9 = 7812
IC3, IC4 = 78L05
IC5 = MAX232ACSE (SMD case)
IC6 = PIC18F4521/L
IC7 = 74HCT541
IC8 = 74HCT14

Miscellaneous:
K1, K9 = 2-way PCB terminal block, lead pitch 5mm
K2 = 6-way RJ11 connector, PCB mount
K3 = 9-way sub-D socket (female), angled pins, PCB mount
K4 = 25-way sub-D plug (male), angled pins, PCB mount
K5, K6 = 4-way PCB terminal block, lead pitch 5mm (or 2 off 2-way)
K7 = 16-pin header
K8 = 10-way header
S1, S2, S3 = miniature pushbutton, 1 make contact, e.g., DT561K (6 x 6mm)
S21 = AC buzzer
X1 = 32.768kHz crystal
X2 = 4MHz crystal
44-pin PLCC socket for IC6
20-pin DIL socket for IC7
14-way DIL socket for IC8
PCB, order code 040011-1, see Readers Services page
Disk, misc. software utilities, order code 040010-1 or Free Download

37
We recommend fitting the 74HCT541 and the 74HCT14 in sockets.

Once the board is fully populated, apply a power supply of roughly 15 VDC to K1 and confirm that the PIC18Flash board draws a quiescent current of around 50 mA. Once the board has powered up correctly, it is time to attach an LC display, flash the CPU and test each subsystem on the board.

Flash the demo firmware

Traditionally, one writes and loads a ‘flash-an-LED’ or ‘Hello World’ program to test a microcontroller board. Here, a successfully blinking LED confirms that the CPU is powered, has a viable clock, and is executing code. We have provided self-test firmware which not only flashes LEDs but also exercises the serial port, the sounder, the LCD, the MOSFET switches, the H-Bridges and the real time clock. The constructor should upload this demo firmware, `PIC18Flash.hex` to the microcontroller using the IC-Prog programming software to fully test the PCB. The source code, `PIC18Flash.c` can then be used as a template for further developments.

Configuring IC-Prog

Download the archive files `icprog105c.zip` and `icprog_driver.zip` from www.ic-prog.com and extract `icprog.exe` and `icprog.sys` to a suitable folder on your hard drive.

If you are running Windows 2000 or Windows XP, you should enable access to the parallel port as follows: right-click on `icprog.exe`, and select the Compatibility tab. Check the Run this program in compatibility mode for option and select Windows 2000 in the drop down box; see Figure 3.

Now run `icprog.exe` and you will be prompted to configure the programmer interface; see Figure 4. Select Settings, Options, Misc and select the Enable NT/2000/XP Driver checkbox, and set Process Priority to High; see Figure 5.

Click Yes to install the `icprog.sys` driver when prompted and finally select the PIC18F452 microcontroller type as shown in Figure 6.

Uploading the demo firmware using IC-Prog

Download the Elektor PIC18Flash demonstration firmware, file number 040010-11.zip from the Ene Downloads page at www.elektor-electronics.co.uk and unpack the zip file to a suitable folder.

Connect a short parallel cable between the PC printer port and the PIC18Flash MTSP port K4, run IC-Prog and select File, Open File, PIC18Flash.hex. Now click Command, Program All to upload the demo firmware. At the end of the program, verify sequence, the PIC CPU will start to run, and will begin to cycle through a sequence of hardware subsystem tests. Each test is depicted on the LCD display and are:

1. **LCD display test.** Data is displayed on the LCD display.
2. **Speaker test.** A sequence of audio tones is generated.
3. **LED test.** The on-board LEDs are illuminated in sequence.
4. **DC Load test.** 12-V DC loads connected to JFXX and JFXX are energized.
5. **H-Bridge test.** 12-V DC motors connected to K5 are spun in forward and reverse directions.
6. **RS232 comms test.** Data is emitted from the RS232 port, K3, at a baud rate of 9600,8,N,1 and this data can be viewed by connecting the port to a PC COM port and using Hyperterminal or similar to display the data stream.
7. **Real Time Clock (RTC) test.** Tests the 32-kHz crystal base and runs forever. Hours and Minutes can be incremented using the pushbuttons.
PIC18F452 Features

The PIC18F452 has a similar pinout to the venerable PIC16F877 and as such is a natural upgrade to that device, but offers much higher capabilities and performance:

- High Performance Harvard RISC CPU optimized for C compiler usage
- Linear program and data memory,
- 32K Flash ROM, 1536 bytes RAM, 256 bytes EEPROM
- 10 MIPS performance at 40 MHz clock
- 16 bit instructions, 8 bit data path
- 4 separate Timer modules (Timer0,1,2,3)
- 25-mA sink & source current
- 3 external interrupt pins
- High & low priority level assignments for interrupts
- Secondary oscillator for timekeeping using a watch xtal
- 2 capture compare (CCP) & pulse width modulation (PWM) modules
- Master Synchronous Serial Port (MSSP) supporting SPI & I²C
- Addressable USART supporting RS232 and RS485
- Parallel slave port (PSP)
- 10 bit analogue to digital converter (ADC)
- Programmable low voltage detection and brown out reset
- 100,000 erase/write cycle endurance on Flash ROM
- 1,000,000 erase/write cycle endurance on EEPROM
- EEPROM data retention of >40 years
- Self-programmable, and programmed code protection
- Power on reset, power up timer, oscillator startup timer
- Low power sleep mode
- x4 PLL on main oscillator
- In circuit programming (ICSP) and in circuit debugging (ICD)
- Wide operating voltage of 2.0 V to 5.5 V

About the Author

Peter Moreton [42] has been involved with computers and electronics since his youth. Working for various international banks, he has architected computer networks that span the globe. He welcomes email correspondence at peter.moreton@virgin.net and will host firmware updates and circuit ideas at: http://freospace.virgin.net/petermoreton

Figure 4. IC-Prog properties.

Figure 5. IC-Prog Programming.

Figure 6. IC-Prog Driver.
resultant HEX file uploaded to the PIC18Flash system.

Using an RS232 bootloader

There are three ways to load firmware into PIC18Flash:

1. MTSP using the parallel port;
2. ICD-2 using the RJ-11 port;
3. RS232 bootloader.

The MTSP method provides a low-cost method of bootstrapping code into the uC, whereas the ICD-2 approach requires an expensive external debugger, but — on the positive side — enables firmware to be debugged in real time within MPLAB.

An RS232 bootloader is a small 'stub' program that is initially flashed into the microcontroller by a traditional programmer. At power-up it communicates with a PC through the serial interface in order to erase and program the microcontroller's flash memory. If no PC client communication is detected, the bootloader passes control to the main firmware application on the uC.

The RS232 bootloader method requires only a Windows COM port and enables firmware upgrades to be easily applied to products 'in the field'. To take advantage of this programming method, the user must first use MTSP or ICD-2 to initially flash the bootloader code. Once the bootloader is in place, you can use a PC bootloader client to upload your PIC *.hex firmware.

There are many freeware bootloaders available on the Internet, and we have tested several suited to use with the PIC18F, including the Tiny Bootloader, which is included in the support zip file, and is described in the inset.

Web Links

Microchip: www.microchip.com
IC-Prog: www.ic-prog.com
Basic18: www.midwest-software.com
Tiny Boot: www.ac.uq.ao/staff/ckiku/software/pickbootloader.htm

Further reading

Goodbye '16, Welcome PIC18F, Elektor Electronics October and November 2003.
Constant Current from 1 to 100 V?

Semitec's CRD range of current-regulating diodes delivers constant current output over a wide voltage input range, up to 100 V. A single CRD allows you to replace several components in a conventional constant current network, thus allowing you to design multiple input voltage circuits and reduce your component count in space-critical applications. Offering current values from 0.01 mA up to 15 mA, the new CRD devices offer protection, stability and improved performance to circuits driving LEDs, generating waveforms and biasing amplifiers. They can also be used as an excellent voltage reference in conjunction with a standard zener diode.

CRDs are available in both an axial DO-35 package and a mini-MELF format. The glass encapsulation of these two packages ensures long-term stability and operating use up to 150 °C. By using them in series or parallel, both higher voltages and higher current ratings can be achieved. Pb-free versions will be available shortly.

AT Semitec Limited, Unit 14 Cosgrove Business Park, Daisy Bank Lane, Anderton, Northwich CW6 6AA. Tel. (+44) (0)870 901 0777, Web: www.atsemitec.co.uk.

Development Systems for 16-bit dsPICs

Microchip now supply a range of 19 new tools and application aids to enhance development for their dsPIC® 16-bit Digital Signal Controller (DSC) architecture. A series of essential software development tools, high-level libraries, application designs and development boards give designers the resources they need.

The development tools include the MPLAB® Integrated Development Environment (IDE). The MPLAB In-Circuit Debugger 2 (ICD 2), also a device programmer, now supports the dsPIC DSC architecture. In fact, these tools are the platform for all of Microchip's microcontrollers and DSCs.

Additional software tools include the MPLAB Visual Device Initializer (VDI), as well as three Real Time Operating Systems (RTOS) from CMX. In addition, there is a filter design package and its companion dsPICworks™ Visual Algorithm Analyzer.

Microchip is also introducing several high-level and utility libraries that give developers the ability to add powerful functionality to their application with a minimal learning curve. Initial high-level libraries include software modems, TCP/IP and motor control. Microchip also offers free DSP, Math and Peripheral utility libraries. The four new hardware development boards are ideal prototyping tools to develop and validate designs with Microchip's dsPIC DSC architecture. The dsPICDEM™ Starter Demonstration Board allows the user to easily validate a development idea using the dsPIC30F6012 (144KB Flash). The dsPIC30F2010-based (12 KB Flash) dsPICDEM 28-pin Starter Demonstration Board enables the user to validate a development tool setup using a 28-pin SDIP or SOIC dsPIC30F device. The dsPIC30F6014-based (14 KB Flash) dsPICDEM 1.1 General Purpose Development Board provides the application designer with a powerful development tool to become familiar with the dsPIC30F 16-bit architecture. The dsPIC30F6014 also features on the dsPICDEM Connectivity Development Boards. These provide the developer a basic connectivity platform for developing and evaluating various connectivity solutions.
Model aircraft sometimes have the unpleasant property of choosing their own landing field, and doing so in terrain where they are hard to see. In such cases, the model finder described here can make the search easier.

An unplanned landing is already bad enough, but to make matters worse, it sometimes happens in a cornfield. That often means searching cross-country through the field for several hours and considerable damage to the field, which neither the farmer nor the insurance company finds especially pleasant. This whistle beacon circuit will at least help you find your model more quickly, by emitting a loud signal if the transmitter is switched off or the joystick is moved past a previously programmed position. The searchers (and unfortunately, the farmer as well) can hardly help hearing this signal.

The circuit is designed to avoid sacrificing a receiver channel. The model finder can be inserted between the receiver and the servo as necessary. The only thing that requires attention is to ensure that the connector on the circuit board matches the pin assignment of the servo cable (see Figure 1).

Receiver signal evaluation

Many commercial model finders evaluate the absence of the remote control signal as the criterion for enabling the alarm generator. What they forget is that if the transmitter is switched off, a large number of noise signals are intermittently present at the receiver output, and the downstream electronics can mistake these signals for control signals. The circuit shown in Figure 2 refuses to be misled by such signals, since it compares the received signal with a reference signal and only responds if the pulse width of the received signal is less than a predefined value.

The evaluation circuit primarily consists of a pair of retrigged multivibrators (IC1) whose timing characteristics are determined by external circuitry. IC1a generates a reference pulse at its output (pin 13) in response to a rising edge of the input signal (clock signal from the receiver).
An acoustic emergency transmitter for model aircraft

The width of this pulse can be set between approximately 1 ms and 2 ms using trimpot P1. IC1b is triggered on the falling edge of the signal at the output of IC1a if the signal coming from the receiver has a Low level. The switching signal is taken from the output of IC1b (pin 5). If the signal from the receiver drops below the pulse width defined by the user, pin 5 will have a High level, which energises the following oscillator stage.

The oscillator is built using a 555 timer IC. This IC can drive a piezo acoustic transducer (without integrated electronics) without any additional circuitry. The frequency-determining components (R4, R5 and C4) set the frequency of the oscillator to around 4 kHz. C4 is charged by R5 and R6 in series and discharged via R6 alone. The oscillator is enabled when the reset input (pin 4) has a High level. A 220-Ω resistor can also be inserted in series with the transducer to reduce the loudness; this will also change the frequency.

Alternatively, a transducer with integrated electronics can be used to reduce the complexity of the circuitry. In this case, a driver transistor and acoustic transducer are connected at point A instead of IC2. The transducer then takes over the task of the oscillator (IC2) and drives the piezoelectric wafer in the transducer at a frequency of around 2–3 kHz. Naturally, this arrangement will not work with a transducer lacking integrated electronics, which cannot be visually distinguished from a type that has its own oscillator.

In relevant specialist magazines, commercial vendors of model finders try to outdo each other with the loudness of their circuitry. For our models, we find a transducer with a sound pressure level greater than 85 dB(A) to be fully adequate. Naturally, the sound must be able to actually emerge via a hole or a perforated region of the enclosure.

Calibration

The only calibration point in the circuit is the threshold for enabling the acoustic transducer. This can be set using trimpot P1. With the transmitter switched on, P1 should be rotated until no tone can be heard at any joystick position. With the transmitter switched off, P1 should be rotated until the tone starts to sound. Of course, you can also adjust the model finder to enable the transducer at a certain joystick position.

Note:

A model-finder function is also implemented in the multi-purpose IC for models described in the January and February 2002 issues of Elektor Electronics.
Quality and passion squared!

Read elektor electronics
leading the way

Take out an 18-month subscription to elektor electronics and receive a free 128 MB USB 2.0 Flash drive or MP3 player with 128 MB Memory.

Please fill out the Order Form with this issue. Subscription rates and conditions may be found at the back of this issue.

* Offer available to Subscribers who have not held a Subscription to Elektor Electronics in the last 12 Months. Offer Subject to Availability.
Motor Drivers/Controllers
Here are just a few of our controller and driver modules for AC, DC, unipolar, bipolar stepper motors and servo motors. See website for full details.

NEW! Bidirectional DC Motor Controller
Controls the speed of most common DC motors (rated up to 32VDC/5A) in both the forward and reverse direction. The range of control is from 0 to 100% of full output in both directions. The direction and speed are set using a single potentiometer. Screw mount back for connections. Kit Order Code: 3166KT - £14.95
Assembled Order Code: A33166 - £24.95

DC Motor Speed Controller (5A/160V)
Control the speed of almost any common DC motor rated up to 100V/5A. Pulse width modulation output for maximum motor torque at all speeds. Supply: 5-15VDC. Box supplied. Dimensions (mm): 60xWx100mm. Kit Order Code: 3067KT - £12.95
Assembled Order Code: A33067 - £19.95

NEW! PC / Stand-alone Unipolar Stepper Motor Driver
Drives any 5, 6 or 8 lead unipolar stepper motor rated up to 6 Amps max. Provides speed and direction control. Operates in stand-alone or PC-controlled mode. Up to six 3179 driver boards can be connected to a single parallel port. Supply: 9V DC. PCB: 60x50mm. Kit Order Code: 3179KT - £9.95
Assembled Order Code: A33179 - £16.95
Assembled Order Code: A33113 - £24.95

NEW! Bi-Polar Stepper Motor Driver
Drive any bi-polar stepper motor using externally supplied 5V levels for stepping and direction control. These are usually comes from software running on a computer. Supply: 5-30V DC. PCB: 75x55mm. Kit Order Code: 3155KT - £12.95
Assembled Order Code: A33050 - £26.95

Controllers & Loggers
Here are just a few of the controller and data acquisition and control units we have. See website for full details. Suitable PSU for all units: Order Code: PSU445 £6.95

Rolling Code 4-Channel UHF Remote
State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40m. Up to 16 Tx's can be learnt by one Rx (Rx includes one Tx but more available separately). 4 indicator LEDs, Rx, PCB: 72x85mm. 12VDC/8mA (standby). 12 channel versions also available. Kit Order Code: 3180KT - £41.95
Assembled Order Code: A33180 - £64.95

Infrared RC Relay Board
Individually control 12 onboard relays with infrared remote control unit. Toggle or momentary. 15mA range. Supply: 12VDC/5mA. Kit Order Code: 3142KT - £41.95
Assembled Order Code: A33142 - £51.95

PIC & ATMEL Programmers
We have a wide range of low-cost PIC and ATMEL Programmers. Complete range and documentation available from our web site.

Programmer Accessories:
40-pin Wide ZIF socket (ZIF40W) £16.00
18V DC Power supply (PSU010) £19.95
Leads: Parallel (LDC136) £4.95 / Serial (LDC441) £4.95 / USB (LDC644) £12.95

NEW! USB 'All-Flash' PIC Programmer
USB PIC programmer for all 'Flash' devices. No external power supply required. Supplied with box and Windows Software. ZIF Socket and USB Plug A-B lead not incl. Kit Order Code: 3129KT - £34.95
Assembled Order Code: A33129 - £44.95

Enhanced "PGCALL" ISP PIC Programmer
Will program virtually ALL 8 to 40-pin PICs plus a range of ATMEL AVR, SENSIX SX & EPROM 240 devices. Also supports in System Programming (ISP) for PIC and ATMEL AVRs. Free software. Blank chip auto detect for super fast bulk programming. Requires a 40-pin wide ZIF socket (not included). Available in assembled format only. Kit Order Code: A33144 - £49.95

NEW! ATMEG 89xxx Programmer
Uses serial port and any standard terminal or comms power supply. 4 LEDs display the status. ZIF sockets not included. Supply: 16-18VDC. Kit Order Code: 3123KT - £28.95
Assembled Order Code: A33123 - £34.95

NEW! USB & Serial Port PIC Programmer
ATX Power Sup

Ton Giesberts

PC power supplies can often be bought cheaply at places such as computer fairs. But it isn’t that easy to check if such a (second hand) power supply still works properly. This dedicated tester makes that job quick and straightforward.
New ATX 2.2 specification

This tester was designed for recent ATX power supplies, but it is also ready for use with new power supplies described in version 2.2 of the ATX specification. These have a main connector with 24 pins instead of 20 (75 Watt extra for use by PCI Express cards).

There is a curiosity in the new specification regarding the -5 V connection. According to version 2.2 of the specification it is no longer used and the pin in question (20) is marked as NC (not connected). However, according to the manuals of several motherboards with a new 24-pin connector the -5 V is still present. So keep in mind that when you test a power supply with a 24-pin connector the -5 V output may or may not exist. The -5 V should always be present on a 20-way connector.

The change from 20 to 24-pin connectors is compatible with the older 20-pin connectors, with an extra +3.3 V, +5 V, +12 V and ground added to one end. An older ATX power supply with a 20-pin connector fits in a 24-pin socket and can only be inserted one way, so mistakes aren't possible.

Apart from the power supply and this tester, you'll only need a mains cable (and socket). All outputs from the power supply can be tested under load and any deviations from the nominal values are shown on 6 LEDs.

Although the power supply in a PC has little bearing on its overall speed, there are times when it needs to be replaced. This may be because the old power supply has simply given up the ghost, and sometimes the internal fans become too noisy, or an upgrade of the PC has increased the power requirements above that of what the old power supply can deliver.

ATX power supplies are available from virtually every computer shop. When you buy a new power supply, it is obviously safe to assume it will be in perfect working order. But when you buy a (used) power supply at a computer fair or boot fair, you want to be sure that it works before you fit it into the case and connect it to the motherboard. A quick test would be very useful then. The true hobbyists may also want to investigate the exact fault in a broken power supply. But it isn't a straightforward job to test a PC power supply with a multimeter.

The power supply tester described here is a very useful and compact tool. We have to admit that you probably won't need it very often. But once you have acquired one, word will spread amongst your circle of friends and you shouldn't be surprised when you're called to 'quickly' check a PC power supply for them.

What is measured?

Our tester doesn't require a separate power supply, as it takes its power from the PC power supply under test. All you need to do is plug the power supply into the tester and then use a mains lead to connect it to the mains. A rotary switch is then used to quickly check all the output voltages. The percentage deviation of a selected output is shown on 6 LEDs. Two of these LEDs show whether the deviation is positive or negative and the other four indicate the percentage difference from the required output voltage.

For output voltages that are connected to more than one pin only the first pin is tested. (A power supply generates only a single +5 V supply, even though it is made available on several pins.)

There is a 26-pin header (K2) on the PCB that can be used to test each pin individually. The outputs are connected through 1 kΩ resistors to protect them against short circuits. If you connect an extension lead to this header you can use a multimeter to take measurements from any pin.

A look at the circuit

An ATX power supply has a total of 6 output voltages, which all have to be tested: +3.3 V, +5 V, +12 V for
Figure 2. The measurement circuit itself is fairly small. A lot of room is taken up by the power resistors (R1-R9), which load the power supply.

standby, +12 V, -5 V and -12 V. The standby voltage (+5VSB) is always present as long as the mains is connected. This voltage is therefore used as the supply for the tester (Figure 1). LED D1 is driven directly from the +5VSB supply and hence indicates that the mains is turned on and that the power supply has at least a working standby voltage.

The power supply is turned on by closing switch S1. This pulls pin PS.ON sufficiently low via R56. According to the specification this pin should be <0.8 V at 1.6 mA. A value of 470 Ω for R56 achieves this.

The PWR.ON output, also called PWR_GOOD or PWR_OK, is used by the power supply to show that the most important outputs (+12 V, -5 V and +3.3 V) are within their limits and can supply a nominal current. When this signal is active, D2 lights up. Since this output can only source 200 μA at a minimum voltage of 2.4 V, a buffer stage consisting of R11, R12 and T1 has been added.

Once the mains is turned on (and D1 and D2 are lit), S1 is used to select the voltage that is connected to the input of amplifier IC1b.

S1 is a 2-pole 6-way rotary switch (it has to be a break-before-make type, otherwise you'll introduce shorts in the outputs). The first switch selects the supply voltage to be tested. The common output of this switch is also connected to a PCB pin (via a 100 Ω resistor for protection). It is possible to connect a small voltmeter module to this pin, so that the absolute value of the selected voltage can be seen.

Next to the connection for the meter (M1) is an extra PCB pin with +5 V for the voltmeter module.

The selected voltage makes its way via the common of S1b to one of the potential dividers connected to the inputs of IC1b.

Each resistor combination gives the right amount of attenuation to the chosen voltage such that the output of IC1b will be a nominal 2.5 V at every position of S1. There is no need for a symmetrical power supply to measure negative voltages because IC1b is a rail-to-rail opamp. With positive voltages IC1b functions as a non-inverting buffer. The two negative supply voltages are inverted and attenuated.

We now take a small jump to the tolerance LEDs in the circuit (D3-D8). According to the ATX specification all voltages should be within ±5%, with the exception of -12 V, which may be ±10%. We have therefore chosen four tolerance ranges that are covered by the LEDs: <5% (green LED D3), 5-10% (yellow LED D4), 10-20% (red LED D5) and >20% (second red LED D6). The range division at 10% was used to give you the choice whether to accept that deviation or
Circuit details

The potential dividers for IC1b have been designed as accurately as possible through the use of resistors from the E96 series. Three of the dividers are made with a (large) E96 and a (small) E12 resistor to get as close to the theoretical value as possible. Since the value of the E12 resistor is much smaller than that of the E96 resistor connected in series, it only has a small effect on the total tolerance. Hence a resistor from the E12 series is suitable here.

Although capacitor C6, which is connected in parallel to reference zener IC4, is not essential according to the data sheet, a little bit of HF decoupling never does any harm with a switched mode power supply.

R41 reduces the effect of the input bias current of opamp IC1a, keeping any error limited mainly to that from the tolerance of resistors R39 and R40.

A small amount of hysteresis is required around IC3a to make it switch cleanly. This does introduce a small error near the zero point as far as a positive or negative deviation concerns (±0.1%), but this is very small compared to the tolerance levels we’re looking at.

For IC3b-d, which are used as comparators, we have intentionally used opamps rather than real comparators because these usually have open-collector outputs. These wouldn’t be suitable for this purpose.

The reference voltages (via R45-R48 and P1) for the comparators are 5%, 10% and 20% lower than the main 2.5 V reference (2.375 V, 2.25 V and 2 V respectively). Resistors R45 and R46 in the potential divider should of course have been exactly 500 Ω, but 499 Ω is a difference of only 0.2%, which is much less than the tolerance of the resistors themselves.

not. A difference of more than 20% is not acceptable in any case.

These LEDs are driven by comparators IC3b-d, which have their inverting inputs connected to a potential divider (R45-R48 and P1). This determines the tolerance ranges with respect to the 2.5 V reference voltage. P1 is used to set the reference levels as accurately as possible.

This just leaves the section that joins the output signal from IC1b to the LEDs. This output signal is nominally 2.5 V and may be a bit more or less when it deviates. But the comparator circuit built round IC3b-d can only indicate negative differences. To get round this problem IC1a inverts the output signal from IC1b. This is followed by an analogue switch that can be controlled using a digital signal. This switch is part of IC2 (a triple analogue multiplexer). The output signal from IC1b and the inverted one from IC1a are connected to inputs Y0 and Y1 of an analogue switch (pins 2 and 1 on IC2). The output of IC1a is also connected to opamp IC3a, which acts as a comparator and compares the signal with the 2.5 V reference voltage. The output of IC3a acts as the control signal for the analogue switch. When the deviation is negative (<2.5 V), IC3a switches pin 2 of IC2 to the output (pin 15), which is connected to the comparators. When the deviation is positive (>2.5 V), the inverted signal (pin 1) is connected to pin 15. In this way LEDs D3-D6 always show the deviation compared to the nominal value. The output of comparator IC3a is also connected to two LEDs, which indicate if the measured voltage is greater or smaller than the nominal value. The yellow LED (D7) is lit when the voltage is lower and the red LED (D8) indicates that the voltage is higher than the reference voltage.

The 2.5 V reference voltage mentioned a few times previously is supplied by an LM4041DIZ-ADJ (IC4) made by National Semiconductor. This voltage can be adjusted to exactly 2.5 V with preset P2.

All outputs from the ATX power supply are provided with a resistive load, where some outputs are loaded more than others. The +3.3 V and +5 V outputs often require a minimum load for the power supply to operate correctly, and are therefore loaded more heavily. To avoid excessive heat generation we haven’t taken the maximum power from the supply, but have limited it to some 45 W (R1 to R9).

Construction

The PCB designed for the tester is shown in Figure 3. The dimensions of the PCB have been kept as small as possible and are not based on any particular enclosure. The ATX power supply connector is on the edge of the PCB, so that this can stick out through the side of an enclosure.
This makes it much easier to insert the connector from an ATX power supply. There are no ‘special’ parts on the PCB. As long as you take care with the polarity and values of all components, and solder neatly, you shouldn’t have any problems with the construction.

All the power resistors are also mounted on the PCB. Due to the heat these generate they should be mounted at least 2 or 3 mm above the PCB, otherwise the PCB will give off smells. (The resistors will do that in the beginning anyway). Resistors R1, R3 and R5 are mounted another 2 to 3 mm above R2, R4 and R6. This method of construction leaves enough ventilation to keep the power resistors cool.

Before you mount the board into an enclosure or diet any holes, you should make a careful note of the distance between the rotary switch and the ATX power supply header. The wiring for the LEDs and the on/off switch can be made with thin stranded wire.

Since this circuit generates a fair amount of heat, it is advisable to use a metal enclosure with sufficient (possibly even forced) cooling. A miniature 5 V fan will be essential if you use a small enclosure. This can be connected to the +5 V pin for the voltmeter module. Make sure that you have enough ventilation holes in the enclosure.

To give the tester a professional look, and make it easier to use, we have produced a front panel, which is shown at a reduced size in Figure 5.

Calibration and operation

There are two presets on the PCB that can be used to set the tester accurately, although the circuit works perfectly well when they are set to their mid-position. For those of you who want to set the tester up as accurately as possible we’ll explain the calibration procedure.
Connect a multimeter between R43 (from the lead nearest P1) and ground. Adjust P2 to give a reading of exactly 2.50 V. Then connect the multimeter between R48 (from the lead nearest the mounting hole) and ground. The voltage at that point should then be adjusted with P1 to give a reading of 2.00 V. And that's it! The use of the tester is very straightforward.

First connect the supply connector (either the 20-pin or the newer 24-pin) from the ATX power supply under test. A 20-way plug is connected to the 'bottom' of the connector on the PCB, i.e. from pin 1 onwards. It won't fit any other way due to the shape of the plug and socket. The power supply should then be connected to the mains, and the mains turned on. The standby LED should now light up. If that isn't the case then the power supply has a serious fault and is best discarded. Turn the power supply on by closing S2. After a short delay LED D2 comes on if the power supply passed its self-test. You then use the rotary switch to select the voltages one by one and read from the LEDs how good the tolerance is. When you're finished you turn off the power supply again with S2. Remember that you shouldn't leave the tester on unnecessarily for long periods, because the power resistors generate a fair amount of heat.

Figure 4. The completed PCB. When the tester is mounted in an enclosure you should make sure that there is plenty of ventilation for the power resistors.

Figure 5. The front panel gives a nice finish to the project and is available as a PDF document.
For rapid development of electronic systems...

E-blocks are small circuit boards each of which contains a block of electronics typically found in an electronic system. E-blocks can be programmed in C, Assembly and are tightly integrated with Flowcode - which instantly converts flow charts into PICmicro code.

Low cost USB PIC programmers
(Starting at £29, model shown £65)

plus a wide range of add-on boards and accessories...

plus incredibly easy to use software based on flow charts...

equals extremely rapid system development! Like this mobile taxi messaging system built from E-blocks.

...and solutions for learning and development...

Hands on training courses

Resources for learning CPLD programming

Complete courses in electronics and programming

Equipment for data logging, control and PC scopes

...and more at:

Matrix Multimedia Limited
sales@matrixmultimedia.co.uk
T. 0870 700 1831 F. 0870 700 1832

...see www.matrixmultimedia.co.uk

Affordable, Professional

ARM7 C/C++ Development!

Everything required for LPC2000 Philips ARM7 development in a single, upgradeable kit.

Industry standard Keil uVISION3 IDE, C/C++ compiler and simulator

Full Simulation of LPC2000 with peripheral & interrupt support

Fully assembled LPC2129 board

16k RAM, 256k FLASH on board

Dual CAN and RS232 interfaces

JTAG and ETM trace debug interfaces

Example program library

uLINK USB-JTAG interface (optional)

Basic 16k code development kits from £75 +VAT

Full 16k development kit with JTAG-USB debugger £249+VAT

(Academic price just £149+VAT)

For full details see www.hitex.co.uk/arm
This article is the first part in a series about programming in Delphi, which concentrates on the practical side of programming and how it can interact with hardware. As an example, how would you write a Delphi program under Windows and then transfer it to an IC to make an autonomous Delphi controller?
Delphi is a programming environment based on the 'Pascal' programming language. You could use it to design an aeroplane or create scientific programs, and also for measurement and control equipment and even use it to program ICs, which in turn control other pieces of hardware.

There are several different versions of Delphi 7. The 'Professional' version is the cheapest, but still offers enough functionality for most users. More expensive versions, such as 'Enterprise' or 'Architect' are obviously also suitable for this course, but are not essential. Older versions of Delphi (5 and 6) can also be used. The authors, both of whom are members of the HCC-PGG (Pascal Users Group) in Holland, hope that this course makes Delphi accessible to as many Elektor Electronics readers as possible. The Pascal Users Group has made a CD available for only 10 Euros (approx. £6.80), which contains the complete Personal Edition (see inset) and a number of extra files that are used during this course. Once you have received this CD you have to request a (free) registration number from the Borland website before you can use Delphi.

The installation of Delphi is explained in detail in a separate article, which is freely available from the Elektor Electronics website (under 'January 2005', file ref. 040240-11), and also from the website that the authors have set up especially for this course (see inset). If you already have Delphi installed on your PC you can start straight away.

In this initial article we begin with a small application to familiarise ourselves with Delphi. We then progress a little further and ‘build’ a digital clock. And finally we design an alarm system that can be put to practical use.

At this point we assume that Delphi 7 Personal Edition has been installed on your PC. First we’ll take a look at Delphi and how it should be used.

Delphi is a development environment for writing and testing programs, and runs under the MS Windows operating system. There is an almost identical development environment available for Linux, called Kylx.

Problems written in Delphi make use of the Pascal programming language. Many visual tools are made available to help speed up program development, which is why Delphi is also called a RAD (Rapid Application Development) tool. When you run Delphi for the first time (via Start/Programs/Borland Delphi 7/Delphi 7) you’ll be greeted with a display as shown in Figure 1. This is the Delphi development environment, usually called the IDE (Integrated Development Environment). The IDE consists of the following elements:

- **Menu bar**
 (File, Edit, Search,...). This menu provides access to all of Delphi’s commands. In the next part we will look in more detail at all Delphi components and how they should be used. For now we’ll concentrate on those components that are relevant to this article.

- **Speed buttons.**
 The most popular commands from the menu can also be accessed via push buttons (speed buttons). If you move the mouse over such a button for a while, you’ll see a hint with its description.

- **Component palette.**
 The libraries in Delphi contain a large number of components that can be used for creating your own Windows applications. Similar components are put together into component libraries. Such a library is called a VCL (Visual Component Library). Each icon on the component palette represents the code for a component. As an example there is a component for entering text, which is called a memo box.

- **Graphic Editor (Form).**
 The graphic editor is the window where all components for an application are put. At the beginning this is empty by default. When you use the mouse to click on an icon from the component palette and then click on the form, the code belonging to that icon is included in the program.

- **Object Inspector.**
 (Called via function key F11) Every component has a number of settings and parameters that affect the operation of the component. These can be modified using the Object Inspector. From the Events tab in the Object Inspector you can add links to code that has to be executed as a result of a particular event in that component (mouse click, key press, etc.).
- **Object Tree View.**
Larger programs consist of many components. When you click on the name of a component in the Object Tree View, the Object Inspector shows all properties for that component. If the screen becomes too crowded, the Object Tree View can be removed by clicking on the [X].

- **Code Editor.**
(Shortcut key F12 is used to toggle between the Graphic Editor and the Code Editor) The program code then appears in the Code Editor window. Any extra code can be typed in using the Code Editor. The editor has a lot in common with other programs such as Notepad and Word.

Altering the settings
The possibility of losing programs can be much reduced by altering a few settings within the IDE.

From the menu click on **Tools/Environment Options.**
In the **AutoSave options** tick **Editor files** and **Project desktop.** The Delphi settings are then stored when you exit. When Delphi is started again, the IDE will look exactly the same as you last left it.

Tick **Show compiler progress** in **Compiling and running.** This option gives you a visual indication as the compilation progresses.

Save these settings by clicking on **OK.**

From the menu click on **Project/Options/Compiler.**
Remove the tick from the **Strict var-string** box in **Syntax options.** Give you more freedom when working with text in the program.

Tick **Range checking** and **Overflow checking in runtime errors** to make fault finding easier during the execution of your programs.

Tick **Default** to make these settings your default.

Save the settings by clicking on **OK.**

Our first program
We start with a simple program to get the feel of Delphi. We follow that well-known tradition and write a program that shows the text “Hello World” on the screen. Here’s how it’s done:

1. Start a new project by choosing **File/New/Application** from the menu.
2. Save the new project and give it a name (It’s true that nothing has been entered yet, but this way all changes will be saved automatically with the new name). From the **File menu** select **File/Save All** and choose or create a directory where the files will be stored. You will be asked for the names for two files, Unit1.pas and Project1.dpr. You should change the name for these files in a way that reflects their function, for example UMain.pas and HelloWorld.dpr. The file Unit1.pas contains the “Hello World” program and the file Project1.dpr is used by Delphi to store information regarding the project.

3. Now put a TForm component (the 8th icon from the left) from the **Standard tab** in the Component palette on to the **Graphic Editor**, also called the **Form.**

4. You can change the size of the form by clicking with the left mouse button on the bottom-right corner of the form and dragging it with the mouse, whilst keeping the left button pressed down.

5. One of the properties of the Form object is the text shown in the title bar. The default is **Form 1.** This can be changed by clicking with the mouse on the Form, making the **Object Inspector** show the properties of **Form 1.**

Change the text after Caption to ‘Hello World’ program.

6. The text on the Button can be changed by clicking on the Button, making the **Object Inspector** show the properties of **Button 1.**

Change the text after Caption to **Show.**

The project should now look like **Figure 2.**

7. If, during the running of this program (from the menu bar click on Run/Run or press function key F9), we click on the button we want the message “Hello World” to appear. But we haven’t got to that stage yet. The TButton type button comes from the VCL library. When we click on this button the component has to know what code should be run. This can be specified in the **Object Inspector.**

Click on the Button to make the Object Inspector show the properties of **TButton.**
Next, click on the Events tab in the Object Inspector. The link next to the **OnClick** event points to the code that is run when that event occurs.

8. If you double-click on the box to the right of the **OnClick** event the Code Editor appears. The standard code is provided by Delphi. This is extended with our code, which is between **Begin** and **End.**

Procedure TForm1.Button1Click (Sender : TObject):

Begin

ShowMessage ("Hello World");

// in single quotes

// all characters after these forward slash
// symbols are treated as a comment

End;

Observations:
The procedure ShowMessage is made available by the operating system, so there is no need for us to write it. A line of Pascal code must end with a ; (semicolon). Comments can be written after // or between (* *) or (.......).

9. The program is then compiled and executed when you press function key F9 (Figure 3).

The directory where we saved the project file Project1.dpr or any other name we gave it also contains an executable file, Project1.exe, created by Delphi. This *.exe can be used outside the Delphi IDE for stand-alone use of the program.

Second program - a digital clock

The next example shows how we can create a program to display a digital clock, using Delphi. We'll assume that you are now familiar with all the procedures we used in the "Hello World" program.

1. Start a new project by choosing File/New/Application from the menu.
2. Save the new project and give it a name via File/Save All.
4. Change the following properties of Label1 in the Object Inspector:
 Caption: 00:00:00
 Transparent: True
 Font: Click on the button on the right with the 3 dots. A Font window now appears.
 Choose font: Arial
 Font style: Bold
 Size: 100
 Color: Red
 Click on OK to accept the changes.
5. Click anywhere on Form1 and modify the following properties of Form1 in the Object Inspector:
 Caption: Digital Clock
 Color: c1Black
 BorderStyle: bsSingle
 the user can't change the format
 Position: psScreenCenter
 BorderIcons: click on [+] to see more options
 B1Maximize: False
6. Change the size of the Form to fit the display. The Form in the Graphic Editor should now look as shown in Figure 4.
7. To make the Label refresh automatically every second, a timer is used. Place a Timer from the System tab on the Form. This timer is visible during the development of the program, but not during its use. This type of component is therefore called a 'non-visual component'. A Timer is really just a mini clock in a component that keeps the same time as the PC.
8. Since the default interval is 1000 ms = 1 s (see Object Inspector), this property doesn't need to be changed. (To make the clock update once per minute this value should be changed to 60000.)
9. In the Events tab of the Object Inspector is an Onclick event. The procedure linked to this event is called at the end of every timer period.
10. If you double-click on the box to the right of the Onclick event the Code Editor appears. The standard code is again provided by Delphi.
11. We extend this with a line between the Begin and End:
 procedure TForm1.Timer(Sender: TObject);
 begin
 Label1.Caption := TimeToStr (Now)
 end;

 The function TimeToStr converts the time into a string of the form HH:MM:SS. This Delphi function comes from the SysUtils unit. The units that Delphi uses when it searches for unknown procedures and functions are listed after the word "Use" at the top of the program. 'Now' is a function that returns the current time and this also comes from the SysUtils unit.
12. The program is compiled and run by pressing function key F9.

The third program - an alarm system

This program provides protection against burglary and fire in a dwelling. The protected dwelling is divided into four zones. If there is an alarm condition in one or more zones this should be indicated both visually and audibly.

The alarm system is implemented as follows. Each zone contains a number of sensors with normally closed contacts, connected in series. In this way a sensor circuit is always closed until an alarm condition occurs in a sensor or the cable is cut.

A number of suitable sensors are shown in Figure 5. Since this system makes use of closed circuits, monitoring the alarm installation comes down to detecting whether or not the sensor loops have breaks in them. The RS232 port in a PC has four inputs that can be used for this.

Should your PC not have a spare RS232 port, or wasn't provided with one, you can use a USB/RS232 converter. (An RS232 port has a 9-way male connector on a PC).

The connection diagram is shown in Figure 6. Pin 4 is used to provide a voltage for the switches. The inputs on pins 1, 6, 8 and 9 will normally see this voltage, or 0 V in an alarm condition.

The program

1. Start a new project by choosing File/New/Application from the menu.
2. Save the new project and give it a name via File/Save All or hold down the keys Shift+Ctrl+S simultaneously.
3. Put four rectangular Shapes from the Additional tab on
the Form and set their properties: Shape = sRoundRect and Brush/Color = clRed.

4. Put a Label from the Standard tab into each of the Shapes and set their properties: Caption = Group 1, Group 2, Group 3 and Group 4, Transparent = True and in the Font-property: Font = Arial, Font style = Bold and Size = 20.

5. Add a Timer from the System tab to the Form so that the state of the alarm sensors can be checked periodically. The Form should now look similar to Figure 7.

6. Before the state of the RS232 inputs can be read, the program has to open the communications port. This is done when the program starts. When the program finishes the port is closed again, making it available for use by other programs. The OnCreate and OnDestroy events are used for this when opening and closing a Form respectively. If you double-click on the boxes to the right of these events in the Object Inspector for Form1, Delphi will add the code for these events in the Code Editor. You should now add our application code between the Begin and End lines (Listing 1).

This code has references to the as yet undefined variable HComm and the constant PName. HComm is a handle/number that refers to the communications port used. The value for this handle is returned by the operating system (Windows) via the function CreateFile. If the value of HComm is <= 0, the communications port could not be opened.

Since a PC may have more than one communications port, the constant PName has been added to the program. This contains the name of the communications

Listing 1.

Procedure TFMMain.FormCreate (Sender: TObject);

Begin
 If HComm <= 0 Then
 Begin
 CloseHandle (HComm); HComm := 0
 End;
 HComm := CreateFile (PChar (PName), GENERIC_READ OR GENERIC_WRITE, 0, NIL,
 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
 If HComm = Invalid_Handle_Value
 Then ShowMessage ('Unable to open comm port!');
 End;

Procedure TFMMain.FormDestroy (Sender: TObject);

Begin
 If HComm > 0 Then
 Begin
 CloseHandle (HComm); HComm := 0
 End;
 End;
Ordering Delphi 7

Borland has made the Personal version of Delphi 7 available cheaply especially for this course. The CD costs €10.00 (ten euros) and contains Delphi 7 as well as several extra files for this course. It can be paid for by credit card [see website below] or bank transfer (in the EC) by transferring to (please copy exactly):

Bank: ABNAMRO
IBAN: NL31 ABNA 0577002562
BIC: ABNANL2A
Name: DETLEF D. OVERBEEK
Address: EDELSTENENBAAN 21
Country: THE NETHERLANDS
Reference: DELPHI ELEKTOR
Post code: 3402 XA

IBAN/BIC payments should not incur bank costs when processed correctly — ask you bank for details. Cheque are not acceptable. The HCC PGG has set up a special website in support of this course: www.learningdelphi.info/.

Here you can find the most up-to-date news and extra files for the course, as well as credit card payment options.

7. The Form with the components for the alarm program.

Figure 7. The Form with the components for the alarm program.

port we want to use. In other words, if we want to use Com5 the value of PName should be 'Com5'.
The variable HComm and the constant PName are defined in the header [Listing 2].

In the OnTimer event of the timer, which is called once per second by default, the status inputs are read and the corresponding indicators/Shapes will be set to green (true) or red, depending on the alarm condition.

Listing 2.

```pascal
Type TForm = Class (TForm)
  Shape1 : TShape;
  Shape2 : TShape;
  Shape3 : TShape;
  Shape4 : TShape;
  Label1 : TLabel;
  Label2 : TLabel;
  Label3 : TLabel;
  Label4 : TLabel;
  Timer1 : TTimer;

  Procedure FormCreate (Sender : TObject);

  Procedure FormDestroy (Sender : TObject);

Private

  Public
  HComm : THandle;

End;

Var TForm1 : TForm1;

Const PName := 'Com1';
```

MS_DSR_ON etc.) and testing if the result is '0', we know whether the bit is set or not [Listing 3]. The result determines whether the Shape takes on a green or red colour.

8. The SoundAlarm procedure is still commented out, but we'll make use of this later.

Note that occasionally you may have to reset the PC in order to get the RS232 port to work properly.

The program can be enhanced with a sound output to draw the attention of the operator. We will use the PC loudspeakers for this. We have included an option to turn off the sound until the alarm condition has passed.

Put a CheckBox from the Standard tab on to the Form. Change the Caption property to "Sound Off".
Listing 3.

Procedure TForm1.Timer1Timer(Sender : TObject);
Var
 MdmSts : Cardinal;
Begin
 If HComm > 0 Then
 Begin
 GetCommModeStatus(HComm, MdmSts);
 If MdmSts And MS_RLSD_ON = 0 Then Shape1.Brush.Color := clRed
 Else Shape1.Brush.Color := clTeal;
 If MdmSts And MS_DSR_ON = 0 Then Shape2.Brush.Color := clRed
 Else Shape2.Brush.Color := clTeal;
 If MdmSts And MS_CTS_ON = 0 Then Shape3.Brush.Color := clRed
 Else Shape3.Brush.Color := clTeal;
 If MdmSts And MS_RING_ON = 0 Then Shape4.Brush.Color := clRed
 Else Shape4.Brush.Color := clTeal;
 // SoundAlarm;
 End;
End;

Define a new procedure in the header, between the words Private and Public: Procedure SoundAlarm;

Remove the comment symbols before SoundAlarm in the OnTimer event

Write the procedure for SoundAlarm. The completed program should now look like Listing 4.

In this first installment we've managed to get through three examples and we may have covered some concepts rather quickly. But we've assumed from the start that those of you who are interested will want to broaden your knowledge of Delphi programming. You'll soon find that programming can be both fun and instructive.

Listing 4.

Unit Unit1;
{ Example of a burglar alarm program Elektor / HCC-PEG.
By Vogelaar Electronics, Banshouren Netherlands.
Rev 0.10 02-09-04 Initial release. *}

{=== Interface ================ *

Interface

Uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls;

Type TForm1 = class (TForm)
 Shape1 : TShape;
 Shape2 : TShape;
 Shape3 : TShape;
 Shape4 : TShape;
 Label1 : TLabel;
 Label2 : TLabel;
 Label3 : TLabel;
 Label4 : TLabel;
 Timer1 : TTimer;
 CheckBox1: TCheckBox;
 Procedure FormCreate(Sender: TObject);
 Procedure FormDestroy(Sender: TObject);
 Procedure Timer1Timer(Sender: TObject);
Private
 procedure SoundAlarm;
Public
 HComm : THandle;
End;

Var Form1 : TForm1;
Const FName = 'Comm';

(* ************************************ Implementation ************************************ *)
Implementation

(* .dfm *)
Procedure TForm1.FormCreate (Sender : TObject);
Begin
 If HComm <= 0 Then
 Begin
 CloseHandle (HComm); HComm := 0
 End;
 HComm := CreateFile (PChar (FName), GENERIC_READ Or GENERIC_WRITE, 0, Nil,
 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
 If HComm = Invalid_Handle_Value
 Then ShowMessage ('Unable to open comm port');
End;

Procedure TForm1.FormDestroy (Sender : TObject);
Begin
 If HComm > 0 Then
 Begin
 CloseHandle (HComm); HComm := 0
 End;
End;

Procedure TForm1.SoundAlarm;
Begin
 If Not CheckBox1.Checked And
 (Shape1.Brush.Color = clRed) Or
 (Shape2.Brush.Color = clRed) Or
 (Shape3.brush.Color = clRed) Or
 (Shape4.Brush.Color = clRed)) Then Beep
End;

(* ************************************ Timer ************************************ *)
Procedure TForm1.Timer1Timer (Sender : TObject);
Var MdmSts : Cardinal;
Begin
 If HComm > 0 Then
 Begin
 GetCommModemStatus (HComm, MdmSts);
 If MdmSts And MS_RLSB_ON = 0 Then Shape1.Brush.Color := clRed
 Else Shape1.Brush.Color := clTeal;
 If MdmSts And MS_DSR_ON = 0 Then Shape2.Brush.Color := clRed
 Else Shape2.Brush.Color := clTeal;
 If MdmSts And MS_CTS_ON = 0 Then Shape3.Brush.Color := clRed
 Else Shape3.Brush.Color := clTeal;
 If MdmSts And MS_RING_ON = 0 Then Shape4.Brush.Color := clRed
 Else Shape4.Brush.Color := clTeal;
 SoundAlarm;
 End;
End;

(* ************************************ End ************************************ *)
End.
Designing a power supply for one of your circuits can be plain sailing but also turn out to be a surprisingly complex job. Switch-mode power supplies in particular may present a real challenge before useful results are obtained. Fortunately, several semiconductor manufacturers come to our rescue.

A small power supply consisting of a mains transformer, a rectifier, electrolytics and a voltage regulator can be designed and put together by most electronics enthusiasts with excellent results. However, switch-mode power supplies (SMPSUs) see increasing use thanks to being smaller, lighter and more efficient than a conventional, linear supply.

Semiconductor manufacturers today offer a wide selection of dedicated, switching ICs for use at the heart of an SMPSU. Dimensioning the circuitry around such ICs is, however, more complex than with a linear counterpart.

In addition to many datasheets and application notes, Fairchild offer a Power Supply Design Toolkit (1)
that allows users to quickly design a switch-mode power supply. The toolkit can be downloaded in its entirety, but the program may also be used on-line.

With **Linear Technology** we saw clearly laid out tables for switch-mode as well as linear regulators. When a certain component is selected, a compact page appears showing essential data and an application example, which we found very useful. The software available here includes SwitcherCAD III [2], which is a Spice-3 simulator comprising the greater part of Linear's switch- ing ICs.

National Semiconductor supplies WeBENCH [3] for PSU designers. Once a component has been selected, the program assists in creating the design and then starts simulating it. Next the utility WebTHERM may be launched to run a thermal simulation.

ON Semiconductor also supplies an impressive range of special ICs for switching power supplies. This manufacturer provides software called Power 4-5-6 Plus [4] for PSU design and simulation.

Another big player in the arena, **STMicroelectronics** has designed special software called VIPer Design Software [5], especially for fly-back converters employing ICs from the VIPer series.

On the **Texas Instruments** website we found, among others, S WIFT Designer Software [6]. SWIFT is TI's acronym for Switched With Integrated FET Technology; a family of synchronous buck PWM converters that go by type codes like TP55461x.

In nearly all cases the use or downloading of the above mentioned software requires registering your contact details with the relevant manufacturer. Fortunately, the process is invariably free of charge and obligation. Besides the IC, when designing a power supply you should also pay attention to the surrounding components like inductors, capacitors and not forgetting the PCB layout (some programs do this for you). Cables and coil former are often seen as stumbling blocks when designing a switch-mode power supply. Several brands are currently available like Coilcraft, Fairrite, Sumida, Micro Metals, Ferroxcube, Magnetics, TDK and Würth. The availability of most of these products is reasonable from mail order companies like Digikey.

The company Würth [7] even supplies design kits with an assortment of coils in direct support of the designs of different semiconductor manufacturers.

The choice of the capacitors in a switch-mode power supply is also a critical factor. Special electrolytics are now available marked by a low ESL (equivalent series resistance) which is maintained at higher (switching) frequencies. As compared with these low ESL caps, 'ordinary' capacitors have relatively poor filtering abilities hence run much hotter in actual use! Some names you should know in this area include Panasonic, Wima, Vishay Sprague and Epcos.
Intelligent Clap

Jörg Prim

A clap switch circuit is a classic beginner’s project. Equipment can be switched on and off by just clapping your hands. Add a tiny microcontroller and you can easily build in some more useful features.
Switch Manual remote control with extras

The microcontroller in this circuit makes it a simple job to add some useful features that are not seen on other clap switch designs:

- Changeover relay contacts enable the unit to be wired in conjunction with a manual changeover switch so that manual override of the switched equipment is always possible.
- The unit is only responsive to a specific sequence of sounds i.e., two claps within a defined time window.
- A safety feature masks the input for a given time window if misuse (repeated commands) is detected (useful if children have discovered how it works).

The safety feature and two-clap sequence detector can be built using TTL or CMOS flip-flops but by using a single microcontroller the circuit can be greatly simplified. A mains power supply is included so no additional power source is required.

A compact Controller

The Microchip flash PIC12F629 microcontroller is a neat device; the small 8-pin package contains a complete microcontroller including clock generator, reset circuitry, Flash ROM, RAM and EEPROM. Two of the eight pins are used for the supply connections while the remaining six are general-purpose I/O pins. A few of these pins have special function like the comparator inputs.

The sound sensitivity of the circuit can be adjusted by programming the comparator threshold level in software. The circuit diagram in Figure 1 shows that besides the microcontroller there are very few other components. The two-pin electret microphone produces an electrical signal in response to sound pressure waves. Transistor T1 amplifies the signal and preset P1 allows some adjustment of the circuit sensitivity by altering the bias voltage of T1.

Two of the PIC output pins are used to drive a bistable relay via transistors T2 and T3. This type of relay has two energising coils. A short electrical pulse on one of the coils is enough to switch the relay in one direction while a pulse to the other coil will cause the relay to switch back. This type of relay has two main advantages: the relay is latching in both open and close direction so a short pulse is all that is necessary to switch it. Secondly the latching feature ensures that the relay retains its switched state even during a power failure. Changeover relay con
COMPONENTS LIST

Resistors:
R1, R6, R7 = 4kΩ
R2 = 150kΩ
R3 = 22kΩ
R4 = 10kΩ
R5 = 150Ω
P1 = 100kΩ preset H

Capacitors:
C1 = 220μF 25V radial
C2 = 100μF
C3 = 1μF 16V

Semiconductors:
B1 = 880C1.50D (round case, 80V p/n, 1.5A)
D1, D2 = 1N4148
D3 = bicolour LED (red/green)
IC1 = 78L05
IC2 = P12F629CP, programmed, order code 030166-41
T1, T2, T3 = BC238 or BC547

Miscellaneous:
JP1 = 2-way pinheader with jumper
K1 = 2-way PCB terminal block, lead pitch 7.5mm
K2 = 3-way PCB terminal block, lead pitch 7.5mm
MIC1 = 2-terminal electret microphone capsule
Re1 = bistable relay, 2 x changeover (e.g., Schrack RT314F12)
Tr1 = mains transformer 1 x 6V, min. 2VA, short-circuit proof (e.g., Morschner VN30.15/10522 or Era 030-7340.05; Conrad Electronics #506141)
PCB, order code 030166-1 (see Readers Services page)
Disk, source and hex files, order code 030166-11 or Free Download

contacts enable the unit to be wired together with a changeover type manual switch, allowing the equipment to be switched manually if for any reason the clap switch is switched off.

Pins 2 and 7 are used to switch a two-colour LED providing a visual indication of the switched state of the relay.

The last output pin of the PIC is not used and is connected to a jumper to allow switching software options.

Software
When the signal level at GP1 goes low (clap detected) the program waits for approximately 200 ms during which time the LED glows red. After this period the LED switches to green and the software samples the input for approximately three seconds. If a second clap is detected during this period, the controller switches the output. After switching, the controller ignores any further clap sounds for approximately 10 s and the LED lights red. The output state is stored in EEPROM so that if a power failure occurs the software will switch the correct relay coil when power is re-established.

A safety feature counts each switching event on an internal counter, which is decremented slowly in software. Should this counter exceed a threshold level, the circuit will ignore any input signals for approximately one minute and the LED blinks red. This will ensure that the circuit does not respond to an extended burst of noise (e.g., applause).

The PCB
The PCB layout shown in Figure 2 accommodates all components apart from the electret microphone. This is attached to the board at the MIC +/- connections with a length of shielded audio lead (keep the wire length to less than around 10 cm).

Mounting the components onto the PCB should be quite straightforward. Start by fitting the single wire bridge next to rectifier B1. Ensure that all polarised components (diodes, LEDs, capacitors and the IC) are fitted the correct way round. The LED leads should be trimmed so that when it is soldered onto the board it protrudes through a hole in the lid when the case is assembled; alternatively use a translucent enclosure.

Once all components have been fitted and all solder connections have been inspected the PCB can be fitted into an insulated enclosure. The mains input lead will require some form of strain relief. Be aware that some tracks carry lethal voltages. All appropriate safety guidelines must therefore be adhered to. A small hole can be made in the lid directly over preset P1 if it is necessary to adjust the sensitivity of the circuit without dismantling the unit. Lastly, don't forget to add perforations in the case so that sound waves can reach the microphone capsule.
Parallax BASIC Stamps - still the easy way to get your project up and running!

Serial Alphanumeric and Graphic Displays,
Mini-Terminals and Bezel kits

www.milinst.com

Robotic models for both the beginner and the advanced hobbyist

Animatronics and Specialist Interface-Control Modules

Development Tools

Milford Instruments Limited Tel 01977 683665, Fax 01977 681465, sales@milinst.com
Forest Electronics – PIC and AVR ANSI C Compiler Products

- Fully integrated editor with syntax highlighting, multiple pages etc.
- Full project support - include and manage multiple source files, simulator, assembler files and notes/comments within one project
- Fully integrated simulator and waveform analyser step from C line to C line, or examine code in assembler form. View device pins using a logic analyser application
- Simulator supports LCD modules, keypad, buttons, LED's, displays, analogue inputs, serial and asynchronous data.
- Designed to ANSI C standards
- PIC - Supports 18xxx, 16xxx, 12xxx series 14 and 16 bit core processors
- AVR - Supports standard and MEGA core processors
- Generates MPLAB/AVR Studio projects and source files and completely standard hex output files.
- Prices from £45.00 - www.fored.co.uk for full details.

WIZ-C / AVIDICY
Drag and Drop rapid application development using ANSI C for PIC and AVR

- Rapid Application Development for the PIC or AVR microcontroller using the C language (WIZ-C for the PIC, AVIDICY for the AVR)
- Drag and drop your software component selections on to your design
- Included components support timers, serial interfaces, I2C, LCD, 7 Seg displays, keypads, switches, port controls, many bus interfaces including IIC and Dallas iButton. AVR/PIC Hardware and more.
- Connect software components to MCU pins by point & click
- Parameters set from drop down list boxes, check boxes, or text entry
- Links your code automatically into library events (e.g. Button Pressed, Byte Received etc.)

Forest Electronic Developments
12 Buldowne Walk, Sway, HAMPSHIRE, SO41 6DU.
01590-681511 (Voice/Fax)

Full details from - www.fored.co.uk

CD-ROM Robotics

In Robotics, electronics meets information technology as well as mechanical engineering. The meeting results in a boundless experimental field. Do you want to explore it?

For beginners the shortest way is along the kits line, while experienced users and programmers are best served by DIY construction. Both options are available on this CD-ROM thanks to a large collection of datasheets, software tools, tips en tricks, addresses, Internet links to assorted robot constructions and general technical information. All aspects of modern robotics are covered, from sensors to motors, mechanical parts to microcontrollers, not forgetting matching programming tools and libraries for signal processing. Robots built from LEGO® bricks also get a fair amount of attention.

Enter the fascinating world of robotics!

Order now using the Order Form in the Readers Services section in this issue.

Elektor Electronics (Publishing)
P.O. Box 190
Tunbridge Wells TN5 7YW England
Telephone +44 (0) 1580 200 657
Fax +44 (0) 1580 200 616
See also www.elektor-electronics.co.uk

RRP £12.08
(US$ 21.28)
Low-cost RS232-to-RS485 Converter

Jürgen Wickenhäusser

In the November 2003 issue of Elektor Electronics we published a neat little 'industrial strength' RS232-to-RS485 converter suitable for use with the MSc1210 board (which was published in the July/August 2003 issue). For a quick test on the bench, a simpler approach is possible, avoiding the need for the MAX232 and LTC485 ICs. Fortunately, almost all RS232 interfaces work happily with 0 V and 5 V levels. This lets us build an extremely economical RS232-to-RS485 converter. The circuit (see figure) will only work, however, when only one is used at a time: all the other nodes on the network must use proper RS485 drivers, as is the case on the MSc1210 board. This converter has been tested on the bench in a network with forty(!) RS485 nodes.

If none of the RS485 nodes is transmitting, the RS232 TX output of the PC can drive the network via the 1 kΩ resistor. Correct relative voltage levels are ensured by the 1 kΩ pull-down resistor to ground on the A wire. All the other RS485 devices will see the data transmitted by the PC.

Now, if one of the other RS485 devices transmits, its driver will overpower the limited current available from the PC's RS232 TX output via the 1 kΩ series resistor. The PC will then receive the signals from the RS485 bus, as desired.

DS1320 Real-time Clock

Benjamin Metz

Some microcontroller applications require a functionality called timekeeping, which is often within the realms of software only. Software timekeeping is not particularly complex as examples showing 'how it's done' are available on the Internet for practically any microcontroller. Unfortunately the method is less suitable for applications requiring higher accuracy: where the power consumption in the standby state has to be minimised; or in the rare case of insufficient memory space being available for the timekeeping code.

Fortunately there exists a simple alternative in the form of a dedicated real-time clock. This may sound ambitious but boils down to just one IC and a quartz crystal. The DS1320 is fine example, requiring just a 2.0 - 5.5 V supply voltage and a cheap 32.768 KHz quartz crystal.

Note however that the crystal has to be specified for 6-pF load capacitance.

The DS1320 has two connections for the supply voltage: one for normal operation and one for keeping the time during standby, for example, a backup battery.

The RTC chip is read out and programmed using the on-board PC bus. The datasheets supply all the necessary details.

The DS1320 also contains a trickle charging circuit to keep the backup battery topped up.

Programming example (in xBASIC): www.tinybasic.net/documents/docs/DS1302RTC.pdf
Mains (or ‘power-line’) signalling has matured from the early stages of the single 130-kHz carrier with simple modulation for a primitive 1-channel on-off control. Today, off-the shelf equipment is available that allows you to use the mains wiring and power outlets in your home or office to convey analogue or digital audio as well as PC data at impressive speeds. The power-outlet LAN is here, but how does it work?
Path = kitchen outlet ↔ office outlet

\[
\text{transfer [%]}
\]

\[
4 \text{ [MHz]} \quad \rightarrow \quad 21
\]

Path = living room outlet ↔ bedroom outlet

\[
\text{transfer [%]}
\]

\[
4 \text{ [MHz]} \quad \rightarrow \quad 21
\]

Figure 1. Two examples of transfer (frequency/attenuation) characteristics presented by mains wiring between two power outlets.

When it comes to sending analogue or digital signals over in-home mains wiring, i.e., excluding professional systems designed for the national power grid (like the highly controversial Power Line Transmission), a bewildering number of manufacturers claim to have the 'very best' for you at 'incredibly low' prices. In this article we will look at the basics of operation of a system that, although fairly pricey, we thought performed adequately. Other products not mentioned here may employ similar methods of operation.

Reshuffling the pack(ets)

Transmission of analogue signals over the mains wiring is now a thing of the past as the technology is fraught with difficulties and invariably yields poor results. Today, we seem to be talking digital only. However, there is still a rather capricious aspect to tackle: the transfer characteristic of the mains wiring between sender and transmitter, and that, unfortunately for all digi-whiz-zos, is 100% analogue in nature. Figure 1 illustrates that different attenuation characteristics must be taken into account for every outlet-to-outlet path in the home or office. Attenuation may be quite high at certain frequencies used by the signalling system (4.3 to 20.9 MHz). To make the characteristic even more unpredictable, loads connected to certain power outlets may actually cause not only a dynamically changing transfer function but also added noise (electric drills, tube lights etc.).

The PowerPacket system employed by Intellon for their HomePlug Power Alliance 1.0 compliant products is capable of continuously and automatically detecting in-band frequencies subject to heavy attenuation. As shown in Figure 2, the available frequency band may be used by up to 84 carriers spaced 200 kHz apart. The actual signal encoding method, ODFM, is not discussed here, but we move on straight to the crux of the system — see **Figure 3**: Carriers dropping below a certain threshold set up in the receiver.
Figure 2. Encoded ODFM signals are distributed over up to 84 carriers within a frequency range of 4.3 to 20.9 MHz.

Figure 3. If a certain part of the frequency range is unsuitable for transmission then carriers are switched off and data is re-allocated.

are switched off, and transfer information tells the transmitter to reshuffle ready-encoded ODFM signals across other, suitable, carriers within the band. By regulation, signal levels on the mains wiring must be reduced by several dBs on frequencies inside radio amateur bands.

Is it safe?

The Devolo dLAN Audio and dLAN Ethernet units we used for this article are CE certified and carry all relevant approvals regarding electrical safety and isolation for use on 230-V domestic and office mains outlets. Great, but is my data safe from my neighbour’s curiosity, supposing he is using a similar dLAN? After all, our homes are connected to one and the same electricity grid? The answer is that your electricity meter and associated circuitry in the metering cupboard will act as a filter that largely prevents those 4-20 MHz signals leaking onto the electricity network and from there onto the neighbour’s mains wiring, although this cannot be entirely ruled out in unfavourable situations where a degree of phase coupling is present. More importantly, however, 56-bit DES encryption is used in combination with passwords so your data should be pretty secure.

What speed? How many extensions?

Devolo claims a data speed of between 5 and 14 Mbit/s depending on noise levels and, of course, the effective distance between units connected to form a LAN. Such speeds are sufficient for DSL distribution in the home. Although in theory up to 253 units may be connected into a power-outlet LAN, Devolo say that in practice bottleneck situations may occur when more than about 10 units convey data simultaneously.

Web links

www.devo league.de
www.intellon.com

Figure 4. The Devolo dLAN Audio and USB units in their semi-opaque cases.
Elektor Junior Computer

Jan Builing

Although the Elektor Junior computer was not the first home-built computer based on the 6502 processor (the KIM and others having achieved spectacular results in the USA) it did become a legendary design with PCB sales in the thousands. The original Junior Computer was designed by Lois Nachman and Gerard Nachbar burning midnight oil in a special ‘computer room’ within the Elektor design lab.

Curiously, when the first Junior computer articles started to appear in Elektor May 1980, the use of ‘newfangled’ technology like a microprocessor was heavily criticized particularly by readers of the English-language edition of Elektor. This was to change within months, however, as the ‘JC’ design matured in near-exponential fashion with no competition from other UK publications and several authors from all over the world jumping the bandwagon by making significant contributions to the Junior hardware and software.

The ‘digitals’ were on the loose and as it turned out there was no stopping them.

Dinosaur Junior
The Junior computer is an expandable system based on the MOS Technology 6502 microprocessor, which is attached to 1 K ROM (2708 EPROM) and 1 K RAM (2 x 2114) yes that’s 0.000001 Gigabytes. The ‘bare’ Junior was programmed in hexadecimal words for instructions, addresses and databytes. A ROM-based monitor, a keyboard and a compact display allowed programs and data to be entered and manipulated. Assembly code came later when the JC was attached to a terminal. Such upgrades did require more RAM and ROM, of course.

The magazine came up with the goods by publishing DIY memory expansion cards. Expensive it was, though, a fully loaded 4 K RAM PCB setting you back by an amount equivalent to buying two 128 MB Flash USB memory sticks today.

Although the Junior computer may appear extremely primitive in this day and age of DSP MPUs flicking at Gigahertz frequencies, we are sure that many readers have fond memories of running their first ‘LED on/off’ and ‘you-press-k-beep’ programs on the Junior and showing them off to family members.

Open-platform
A remarkable thing about the Junior computer, as compared with many other projects published since the mid-1970s, is that it drew in lots of contributions from readers — specifically, 6502 software making clever use of (scarce) hardware resources or allowing the Junior to communicate with the real world. Examples include a 6502 system monitor, an assembler, a magnetic tape interface, a floppy disk interface and to cap it all, adapted BASIC!

One Junior computer was specially built and adapted for use as a programmer system by our own Software Service at a time when bipolar PROMs like the 82523 and 825123 were used in Elektor projects. The system proved utterly reliable and supplied hundreds of PROMs before a more versatile programming system was obtained.

Books and Paperware
Software, hardware, spyware, bloxware, vapourware, whatever next? In the early 1980s, Elektor made a wise move to bundle all published articles on the Junior computer into four magnificent books and four cut-price Paperware editions resembling stencilled college curricula. Paperware 1-4 are now collector’s items not for their content or low print run we guess, but because not looking like ‘books’ they got thrown away easily in house and office moves (including our own!).

Our thanks are due to Mr Dennis Fitzpatrick for parting with his JC ‘bare’ board.

Says Dennis: “Great little computer, never bothered to do the expansion stuff but I learned a lot. One leg of the board was always missing. I used to use an eraser to balance the board and just got used to it, I suppose.”
New

Flash Microcontroller Starter Kit
Elektor Hardware & Software

Contents of Starter Kit:

- 89S8252 Flash Microcontroller board (ready-assembled and tested PCB), 300-mA mains adapter, serial cable for COM port an a software bundle on CD-ROM. Article compilation on CD-ROM:
 - 89S8252 Flash Microcontroller Board (December 2001)
 - Microcontroller Basics Course parts 1-6 (January through June 2002)
 - Microcontroller Basics FAQ (September 2002)
 - Port Line and ADC Extension for 89S8252 Flash Micro Board (December 2002)
 - Chess Computer using the Flash Micro Board.

Order now using the Order Form in the Readers Services section in this issue.

Elektor Electronics (Publishing) P.O. Box 190
Tunbridge Wells TN5 7WY England
Telephone +44 (0) 1580 200 657
Fax +44 (0) 1580 200 616
See also www.elektor-electronics.co.uk

:: Special Offers ::

TEKTRONIX

2445A £425

TCL-MA2 400 MHz, Local L08 250 MHz, Local L18 250 MHz £350

H.P. 5464A Logic Analyzer, 16 Channel, 60 MHz £345

TI-CAPS 400 MHz, Local L08 250 MHz, Local L18 250 MHz £350

SEIKO SKSD 3.5 GHz £275

WAVEX AR8800 £145

RACAL 3051 £300

H.P. 5464A Logic Analyzer £360

FARAXELL Associated Analyser £85

FARAXELL OSA £85

FLUKE 805 £225

H.P. 3543 £300

FARAXELL LFS £95

H.P. 3543 £300

FLUKE 17 £195

H.P. 3540 £200

FARAXELL ST £50

H.P. 3540 £200

FLUKE 7 £195

H.P. 3540 £200

H.P. 3540 £200

Racal 9187 £95

Datron 9078 £225

High Quality 6.5 Digit Bench Multimeter True RMS +wire Current Converter

Farnell DTV 12-14 Oscilloscope Dual Trace 12 MHz TV Coupling Only £85

Farnell LFI Sine/Sq Oscilloscope 100MHz, 1 MHz

OSCILLOSCOPES

SPECTRUM ANALYSERS

DIGITAL SOURCES

Watch our Website for

Check Our Website for

Latest Prices & Equipment

STEWART of READING

17A, KING STREET, IORTIMER, NR READING RG7 3R5
Tel: 0118 933 1111, Fax: 0118 939 3370
www.stewart-of-reading.co.uk
Easy-PC version 8 is released

Winning accolades the world over, Easy-PC for Windows V8 is a major milestone in the evolution of this extremely popular software tool. Try a demonstration copy of Easy-PC and prepare to be amazed at the power, versatility and remarkable value for money.

Fully integrated Schematics & PCB layout in a single application complete with forward and back annotation. Design and rules checks at all stages ensure integrity at all times. Professional manufacturing outputs allow you to finish the design process with ease.

Stop press... Stop press... Stop press... Stop press... Stop press...

By customer demand now with Eagle import as well as Tsien Boardmaker 2 import.

call for a brochure, prices & CD on +44 (0) 1684 773662
or e-mail sales@numberone.com
you can also download a demo from

www.numberone.com

Number One Systems - Oak Lane - Bradon - Tewkesbury - Glos - United Kingdom - GL20 7LR UK

2x300W Amplifier board with SMDs pre-fitted

This top-end amplifier proves that high power does not have to mean a large, heavy design. Although this amplifier is highly efficient (and thus compact), its specifications easily surpass those of quite a few conventional designs.

This 2 x 300 watt amplifier board has modest dimensions thanks to the use of SMD parts fitted at the underside. Elektor Electronics greatly simplifies building this project by offering the stereo amplifier board with all SMD parts already mounted, for just £34.50 (or US$55.70)! Also included are the two toroid cores for the output filters.

More information on this powerhouse may be found in the June and September 2004 issues of *Elektor Electronics* magazine.
kitchen table

PLAYFUL LIGHTS

Just three LEDs...

Hubert Maiwald

Here's a recipe to make LEDs produce slow, continuous light effects rather than abrupt changes normally obtained from square-wave drive signals.

If you are after really accurate control of one or more LEDs, the best option by far is pulsewidth modulation (PWM) which is usually obtained from a dedicated PWM chip or a suitably programmed microcontroller. On the other hand, if the blink frequency is tolerably important, other, much simpler methods are available. For example, get out two square-wave oscillators running at slightly different frequencies and mix their outputs together in an XOR (exclusive-OR) logic gate. That's all it takes to build a beat-frequency oscillator whose low-frequency output signal is pulsewidth modulated in a triangular (ish) fashion.

Beat-frequency (BFO) or heterodyne oscillators are often used in metal detectors and in RF technology — you will rarely find one used in an audio-frequency application. For example, if the first oscillator operates at 70 Hz and the second, at 70.1 Hz, connecting the two signals together in an XOR gate will produce a pulse width modulated triangular signal of just 0.1 Hz that is optically free from interference with 50-Hz (or 60-Hz) light sources. It takes just a few dead standard parts to take the principle of the BFO from theory to practice. If you would like to employ green and yellow LEDs for lighting purposes and gradually change the colours in a purposely erratic way, then a single IC type 74HCT132 does the job (Figure 1).

COMPONENTS LIST

Resistors:
R1, R8, R9, R10 = 1 kΩ
R5, R6, R7 = 2 kΩ
R2, R3, R4 = 976 Ω 1%
P1, P2, P3 = 50 kΩ preset

Capacitors:
C1-C4 = 22 μF 16 V radial
C5-C8 = 100 nF

Semiconductors:
D1 = LED, green, low current
D2 = LED, yellow, low current
D3 = LED, red, low current

or:
D1, D2, D3 = RGB LED (e.g., Conrad Electronics # 185338 - BB)
D4 = 1N4148
T1, T2, T3 = BC547
IC1 = 74HCT132
IC2 = 74HCT86
IC3 = 7805

Miscellaneous:
K1 = 9-V PP3 battery with clip-on leads
PCB, available from The PCBShop
whose collector resistors (R8, R9, R10) need to be dimensioned in accordance with the required LED threshold voltage, the supply voltage and the brightness you'd like to achieve. In practice, the brightness changes are not quite triangular, not just because the rectangular oscillator signal does not have a 50% duty cycle, but also as a result of the non-linear current/luminosity characteristics of the LEDs.

A PCB design is given (Figure 2) to enable all followers of the kitchen table series of mini projects to experiment to their hearts' content. Sockets may be used for the two DIL ICs. With all parts fitted at the right polarity and properly soldered, the circuit should function straight away when K1 is connected to a 9-volt PP3 battery or a suitable mains adaptor.

Figure 1. Circuit diagram of the beat-frequency oscillator.

Gate IC1A forms the basic frequency generator that's connected to all XOR gates. Each gate is complemented by an individual oscillator IC1B, IC1C and IC1D whose oscillation frequency can be individually adjusted (with a preset) to a value very close to the basic frequency.

The XOR gates drive the LEDs by way of transistors.
Measurements using a probe — never a problem! For sure?

The use of a probe for measurements with the oscilloscope should be customary to most, if not all, designers of electronic circuits. In particular the switchable 1:1/1:10 probe [Figure 1] is popular.

With the probe in '1:1' mode you measure at an impedance of 1 MΩ and the signal is not attenuated before it reaches the oscilloscope input (switch in Figure 2 closed). If you want to measure with a lighter load attached to the object of your investigations then the probe is usually switched to '1:10' mode (switch in Figure 2 open).

The resulting image on the 'scope will become 10 times smaller because the signal is attenuated ten times in the probe. The trimmer capacitor ensures the voltage divider is as wideband as possible and the division ratio remains as close as possible to 10:1. It's as simple as that, if only the circuit in Figure 3 did not exist!

If you use a 1:1/1:10 probe to measure the signals between points A and B in this circuit, the image on the 'scope will remain the same if you switch the probe between 1:1 and 1:10 mode. With this simple to build circuit on the bench, most experienced test engineers will be suspicious of their probe. However, it's working just fine!

How do you explain the fact that the scope displays the same signal irrespective of the probe attenuation?

The circuit is certainly worth building because seeing an unchanged signal on the 'scope despite switching the probe is mystifying.

Quizz'away and win!

Send in the best answer to this month's Quizz'away question and win a

Voucher for Elektor Electronics products, including a subscription, worth £100

All answers are processed by Martin Ohmann in co-operation with Elektor editorial staff. Results are not open to discussion or correspondence and a lucky winner is drawn in case of several correct answers.

Please send your answer to this month's Quizz'away problem, by email, fax or letter to: Quizz'away, Elektor Electronics, PO Box 190, Tunbridge Wells TN1 7WY, England. Fax (+44) 01580 200616. Email: editor@elektor-electronics.co.uk, subject: 'quizzaway 1'05'.

The closing date is 22 January 2005 (solution published in March 2005 issue). The outcome of the quiz is final. The quiz is not open to employees of Segment b.v., its business partners and/or associated publishing houses.
As of the September 2004 issue Quizz’away is a regular feature in Elektor Electronics. The problems to solve are supplied by Professor Martin Ohsmann of Aachen Technical University.

Solution to the November 2004 problem

(p. 79; energy conversion)

Naturally, you would assume that the circuit has just one lossy element, namely resistor R, which will arrange for all voltages and currents to decrease gradually. Hence all energy would go into the resistor. It is, however, not so simple.

Using the Hint we gave we first look at the ‘dual notion’ problem. Instead of the parallel connection of two coils, a resistor and a closed switch we get a series connection of two capacitors, a resistor (conductance) and an open switch (Figure 4). Before the switch is closed (t < 0) the voltage on the left-hand capacitor C1 takes the value $U_1 = U$, while C1 carries a charge $Q = CU$. The left-hand capacitor stores all energy W in the system, amounting to $W_{(0)} = 1/2 C U^2$. When the switch is closed, charge flows from capacitor C1 onto C2, with the current I initially limited by the resistor. Initially, I will equal U/R but then drop exponentially. If we wait sufficiently long (i.e., infinitely), the voltage on the capacitors will be identical, which also means the capacitors carry the same charge $Q = 2I$. The current and voltage curves are shown in Figure 5. The resulting voltage is exactly $U/2$ and the total amount of energy stored in the system, $W_{(t)} = 1/4 C U^2$. This is half the energy originally present in the system ($W_{(0)}$). The rest has been converted into heat by the resistor. Consequently we can write $W_{(t)} = 1/4 C U^2$ irrespective of resistor R!

Our coil circuit is the ‘dual notion’ variant of the above: when the switch is opened, the current flowing through L1 initially has to flow on through the resistor because it can only rise slowly in L2. This causes a voltage U on resistor R. Next, with the current through L2 rising, the voltage on R will drop exponentially. The coil current rises to half the start value while the current through L1 drops to half the answer to the question is, therefore; the resistor turns on an amount of energy $W_{(t)} = 1/4 C U^2 = 0.5 mW$ into heat.

With the capacitor experiment, we can make use of the charge response of the ‘stop’ plot (cf. Figure 6, upper drawing) to explain why the end situation is obtained. Does a similar ‘remaining quantity’ exist in the coil experiment? Assuming ideal coils are used for L1 and L2, they form a loop with infinite conduction (Figure 6, lower drawing). However, in infinitely conducting loops, the magnetic flux is constant. After all, if it were to change, a voltage would be induced in the loop (induction principle). Because of the infinite conductivity, it would generate infinite losses. The above could be demonstrated using superconducting coils. However, without superconductors, coil losses (i.e., finite conductivity) will cause the magnetic fields to be reduced relatively quickly. Arguably, it is easier to hand over a charged capacitor than a charged inductor! In switch-mode power supplies however, the above situations are quite common with charges or magnetic fluxes distributing at energy losses.

Prototypes and small series up to 1000 pcs

Value for Money
Up to 6 layer boards
Always Available
Attractive price
On-line Printed Circuit Boards

www.ThePCBShop.com

Double Sided, 1.6 mm,
Plated Through,
Green Solder mask,
Hot Air Level,
1 White Legend,
Price including
tooling + plotting + VAT
100 mm x 160 mm
1 pcs = 45.74 Euro
100 mm x 80 mm
5 pcs = 68.97 Euro
ALLGOOD TECHNOLOGY
www.allgoodtechnology.com
Low-medium volume sub-contract assembly, SMT specialist since 1990. Customers include military, aerospace etc. 0402 to BGA capabilities, automatic assembly and hand built prototypes.

AUDIOEXPRESS
www.audioexpress.com

BETA LAYOUT
www.pcb-pool.com
Beta layout Ltd Award-winning site in both English and German offers prototype PCBs at a fraction of the cost of the usual manufacturers' prices.

BURN TECHNOLOGY LTD
http://www.burntec.com
Test & Measurement Equipment Distributors.
- Anemometers
- Clamp Meters
- Light Meters
- LCR Meters
- Sound Meters
- Multimeters
- Device Programmers
Burn Technology Limited, Winfrith Technology Centre, Dorchester, Dorset DT2 6DH
Tel: (01305) 852093 Fax: (01305) 851940

COMPUCUT
http://www.compucutters.com
Computer Numerical Control from your home PC. Great for tricky jobs, and accurate repetitive work. We supply: - Software - Interface - Manual - Support
Price £250 plus postage.

CONCORD ELECTRONICS
http://www.confordelac.co.uk
Lightweight portable battery/main audio units offering the highest technical performance. Microphones, Phantom Power and Headphone Amplifiers. Balanced/unbalanced signal lines with extensive RFI protection.

DANBURY ELECTRONICS
http://www.me-h.demon.co.uk/transformers.html
Here you will find our mains and output transformers in Mike Holme's range of valve/tube amplifiers (PP & SE). Also circuits, parts lists, chassis, advice.

DEBUG INNOVATIONS UK
http://www.debuginnovations.com
Introducing hassle free prototyping.
- RF / Analogue
- High speed digital
- Power planes
- Unique patch architecture
Forget custom PCBs, start your project now!

EASYSYNC
http://www.easysync.co.uk
EasySync Ltd sells a wide range of single and multi-port USB to RS232/RS422 and RS485 converters at competitive prices.

EXELOX PTY LTD
http://www.exelex.com
Developer and manufacturer of
- USB Development Modules.
- USB/OLED Series.
- MP3 Solutions.
- MP3MOD04 Module. Distributor inquiries welcome.

ELNEC
www.elnec.com
- device programmer manufacturer
- selling through contracted distributors all over the world
- universal and dedicated device programmers
- excellent support and after sale support
- free SW updates
- reliable HW
- once a month new SW release
- three years warranty for most programmes

ERVAN INTERNATIONAL CO.
http://www.evan-int.co.uk
Power Electronics and Solar Energy Design and Consultants. Also offers:
- Discount prices on:
 - Ultra Bright LEDs
 - PCB LED Cluster Kits
 - Laser Pointers
 - Solar Modules
 - Batteries
- Compiler, Prog 'n Drop Visual Development and a well featured debugging environment.

FOREST ELECTRONIC DEVELOPMENT
http://www.foreed.co.uk
FED supply PIC programmers, Basic modules, and development software including a PIC C

FUTURLEC
http://www.futurlec.com
Save up to 60% on:
- Electronic Components
- Microcontrollers, PIC, ATMEL
- Development Boards, Programmers
Huge range of products available on-line for immediate delivery, at very competitive prices.

FUTURE TECHNOLOGY DEVICES
http://www.fdtdchip.com
FTDI designs and sells USB-UART and USB-FIFO interface IC's.
Complete with PC drivers, these devices simplify the task of designing or upgrading peripherals to USB.

HAMMOND ELECTRONICS
http://www.hammondmg.com
sales@hammond-electronics.co.uk
Tel: 01258 812812.
Small die-cast, plastic and metal enclosures for the hobbyist and professional. Widely available from major distributors.

ILP ELECTRONICS LIMITED
http://www.ilpelectronics.com
ILP has been in the audio industry for over 30 years primarily manufacturing both standard and custom audio modules and pre-amplifiers.

IPEVA LIMITED
http://www.ipeva.com
IPEVA sells low cost USB FPGA development boards. IPEVA provide Design Consultancy for Embedded Systems, OpenCores-IP, FPGA, ASIC, HDL translation and migration. Tel. 0870 800 2340

JLB ELECTRONICS
http://www.jblelectronics.com
Suppliers of electrical / electronic parts and consumables. Including:
- Cable ties / bases
- Bootlace ferrules
- Solvent sprays & cleaners
- Heat sink compound

KOMCARD
http://www.komcard.com
Learn how to design a PCI card, and write a PCI device driver. We lead you step by step with practical PCI projects you build.

LONDON ELECTRONICS COLLEGE
http://www.tec.org.uk
Vocational training and education for national qualifications in Electronics Engineering and Information Technology (BTEC First National, Higher National NVQs, GCESEs and Advanced Qualifications). Also Technical Management and Languages.
MQP ELECTRONICS
http://www.mqpegutronics.co.uk
Leaders in Device Programming Solutions:
 • Online shop
 • Low Cost Adapters for all Programmers
 • Single Site and Gang Programmers
 • Support for virtually any Programmable Device

NEW WAVE CONCEPTS
http://www.new-wave-concepts.com
Software for hobbyists:
 • LiveWire circuit simulation software, only £29.36
 • PCB Wizard circuit design software, only £29.36
Available from all Maplin Electronics stores and www.maplin.co.uk

PHYZX
http://www.phyxz.co.uk
Automatically Plot and Drill PCB's
 • Accurately
 • Repeatably
 • Mains operated
 • Robust Steel Construction
 • Gerber RS274X compatible
 • Full XY7, R5232 Control
 • Including Accessories
 • Complete system Under £500

PICODos™
http://www.picodos.com
Hard disk, DOS & files on PIC16F877.
SmartMedia™ based.
No complex hardware just wires.
Run-Debug existing PIC code & interrupts.
Free schematics, software, debugger

QUASAR ELECTRONICS
www.quasar-electronics.com
Over 300 electronic kits, projects and ready built units for hobby, education and industrial applications including PIC/ATMEG16/32.
Contact: sales@quasar-electronics.com

ROBOT ELECTRONICS
http://www.robot-electronics.co.uk
 • Ultrasonic rangefinders
 • Motor H-Bridge controllers
 • Magnetic Compasses
 • RC servos and controllers
 • PIC programmers and components
 • Electronic Design/Development and Manufacturer to industry

TECHNBOOTS
http://www.technobots.co.uk
Welcome to Technobots - the one stop shop specially for the remote operated robot builder, radio control and engineering hobbyist.

TELNET
http://www.telnet.co.uk
The site shows graphically Telnet's wide range of quality second-user test and measurement equipment, including oscilloscopes and spectrum analysers.

ULTRALEDs
http://www.ultraleads.co.uk
tel: 0871 7110413
Large range of low cost Ultra bright LEDs and LED related lighting products. Major credit cards taken online with same day despatch.

USB INSTRUMENTS
http://www.usbm.com
USB Instruments specialises in PC based instrumentation products and software such as Oscilloscopes, Data Loggers, Logic Analysers which interface to your PC via USB.

VIEWCOM
http://www.viewcom.com
Tel: 020 8471 9338 Fax: 020 8552 0946
 • Mail Order supplier of:
 • Integrated Circuits and Components.
 • Kit and parts for EEL projects.
 • Transistors, FETs, Capacitors, Resistors, Crystals, etc and hard to find devices.
 • Viewcom Electronics, 77 Upper Road West, Pilsen, London E15 9LT

VIRTINS TECHNOLOGY
http://www.virtins.com
PC based virtual instrument for electronics enthusiasts, students and professionals, including full-fledged sound card real time Oscilloscope, Spectrum, Analyzer and Signal Generator, Downloader and try.

PROMOTE YOUR WEBSITE HERE
Elektor Electronics have a feature to help customers to promote their websites. Net Links – a permanent feature of the magazine where you will be able to highlight your site an a regular basis.
 • For just £120 + VAT (£100 per issue for eleven issues) Elektor will publish your company name, a 25-word description and your website address.

I wish to promote my company, please book my space:
 • Text insertion only for £120 + VAT • Text and photo for £300 + VAT
NAME: __________________________ ORGANISATION: __________________________
JOB TITLE: __________________________
ADDRESS: __________________________
_________________________ TEL: __________________________
_________________________ FAX: __________________________

PLEASE COMPLETE COUPON BELOW AND FAX BACK TO 00-44-01932 563998
COMPANY NAME: __________________________
WEB ADDRESS: __________________________
25-WORD DESCRIPTION: __________________________
Readers Services

Please note:
Software items marked @ are available from the Free Downloads page of the e击刊 website www.electronicsissue.co.uk.
Resources for students and educators are planned for the future.

General

Crystal Radio Amplifier
- 300-W Class-T Amplifier
- suits 300-W Class-T amplifiers for use in stereo systems
- £25.95

Flash Memory Controller Starter Kit
- for use in digital photography
- £19.95

Gameplay Digital Sampling Oscilloscope
- for use in digital applications
- £19.95

Microservices with NSC1210 Board
- for use in microservices applications
- £24.95

EVERGREENS

Elektronics Help Disk
- £14.95

Electronics Item Tracer 1985-2003
- £14.95

Universal Prototyping Boards
- UB-6-2, UB-6-3, UB-9-4
- £6.55

No. 339 JANUARY 2005

ATX Power Supply Tester
- £29.95

Intelligent Clap Switch
- 0015-15-1 PCB
- £9.95

PIC18F Development Board
- 0112-16-1 PCB
- £10.99

No. 338 DECEMBER 2004

IGI Home Bus
- £39.95

LED Christmas Tree
- £6.99

USB / I2C Interface
- £39.95

No. 337 NOVEMBER 2004

Noise Suppression Filters
- £9.95

Battery Charger / Jigger
- 0060-14-1 PCB
- £9.95

No. 336 OCTOBER 2004

Clarity 300-W Class-T Amplifier
- 0215-2 PCB
- £15.99

Four in a Row
- £4.95

No. 335 SEPTEMBER 2004

Rolled Dice
- £2.95

Swiss Army Knife
- £9.95

No. 334 JULY/AUGUST 2004

IR Servo Motor Interface
- £14.95

Microservices with MS210 Board
- £4.95

A/C Detector
- £4.95

PAST ISSUES

USB Converter Controlled via HTML
- £4.95

No. 333 JUNE 2004

Multi Processor
- £14.95

Roller Router
- £14.95

Smooth Operator
- £14.95

No. 332 MAY 2004

Design Your Own IC
- £14.95

High-End Preamplifier
- £14.95

Wind Speed & Direction Meter
- £14.95

No. 331 APRIL 2004

Deep-in Microcontroller Board
- £14.95

WFM-Link Explorer
- £9.95

No. 330 MARCH 2004

Build Your Own DRM Receiver
- £9.95

Code Lock
- £9.95

Hassle-on CPMs (2)
- £9.95

Multichannel Satellite Digital Audio Decoder
- £9.95

Multichunction Frequency Meter
- £9.95

PAST ARTICLES

For information on past issues, please contact: Ehitronics Issue Magazine, 30 North End Road, London W11 4PH, U.K. Tel: 020 8945 3570.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>£</th>
<th>US $</th>
</tr>
</thead>
<tbody>
<tr>
<td>02024/14-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>02029/41-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 328 JANUARY 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03020/5-1 PC</td>
<td>15.00</td>
<td>22.50</td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>02029/41-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>02029/41-11 RC1625026S-8GB, SID, programmed</td>
<td>70.00</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Climate Logger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03020/61-11 PC</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>02024/14-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>FMS Flight Simulator Encoder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02029/61-11 PC</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Multi-event Alarm Clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03024/11-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Sloper Meters Uncovered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03024/11-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 327 DECEMBER 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM Radio Control Transmitter & Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Project Keeper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Stopper Motors Uncovered (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 326 NOVEMBER 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Measurement Central</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 326 NOVEMBER 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev Counter for R/C Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Running Time Display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 325 OCTOBER 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDS RF Signal Generator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Minimalist Induction-Balance Metal Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>No. 324 SEPTEMBER 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVP Picture Generator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>DTMF Remote Telephone Switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 R1625026S-8GB, SID</td>
<td>100</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>LC Display with ZOC Bus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>PIC Prog 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02024/11-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Polyphonic Doorbell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>95.00</td>
<td>142.50</td>
<td></td>
</tr>
<tr>
<td>03020/61-11 DSK, PO source code</td>
<td>250</td>
<td>390</td>
<td></td>
</tr>
</tbody>
</table>

Note: Products for older projects (if available) may be found on our web site http://www.ekeltron-electronics.co.uk
13.56-MHz RFID Detector
This detector will tell you if RFID (radio frequency identification) equipment is active in a shop or warehouse where 'tagged' goods (like clothes) need to be registered as they are moved around by staff or customers. The detector works at 13.56 MHz, which is a widely used frequency allocated to RFID pulse senders. Our detector will only signal the presence of an active RFID sender (fixed or portable), that is, it does not read out information from active tags. The detector is a quite sensitive dual-conversion receiver with a PCB track antenna.

Wireless Microphone
Extremely compact RF modules for short-range audio transmission within the new licence-exempt 863/865 MHz frequency band allow a wireless microphone to be built. The modules from Circuit Design already contain a preamplifier system and all essential building blocks for audio transmission, so all we need to add is a suitable microphone and amplifier interfaces.

Wireless Data Comm
The cordless mouse, WLAN, Bluetooth and even Formula 1 telemetry systems are all based on wireless communication and dedicated protocols. The use of these systems is subject to globally harmonised ISM (Industrial Scientific Medical) frequency bands. Depending on the frequency, each of these has its advantages and disadvantages which in turn mean or less govern what applications can be accommodated and co-exist in a certain ISM band.

Also...
VHF FM Antenna Booster
Synchronous Servo Control
LED Packet Torch
Serially Programmable Crystal Oscillator
Butterfly Dipole, Lab Talk (1)

RESERVE YOUR COPY NOW!
The February 2005 issue goes on sale on Friday 21 January 2005 (UK distribution only). UK subscribers will receive the magazine a few days before this date. Article titles and magazine contents subject to change.

NEWSPRINT ORDER FORM
SHOP SAVE / HOME DELIVERY
Please save / deliver one copy of Elektor Electronics magazine for me each month
Name: ..
Address: ..
Post code: ..
Telephone: ..
Date: ...
Signature: ..

INDEX OF ADVERTISERS

Advertising space for the issue of 15 February 2005 may be reserved not later than 31 January 2005 with Hutton International Media - Cambridge House - 10 Gaffe Lane - Chertsey, Surrey KT16 8AB - England - Telephone 01932 564 999 - Fax 01932 56 598 - e-mail: perry@huttonmedia.com to whom all correspondence, copy instructions and artwork should be addressed.
<table>
<thead>
<tr>
<th>Description</th>
<th>Price each</th>
<th>Qty</th>
<th>Total</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM Audio Collection 2 NEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-ROM Robotics</td>
<td>£ 12.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x300W Amplifier board with SMDs pre-fitted</td>
<td>£ 34.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro Web Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC 1210 board</td>
<td>£ 69.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network extension</td>
<td>£ 41.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined package</td>
<td>£ 103.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash Microcontroller Starter Kit</td>
<td>£ 69.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-total:

P&P:

Total paid:

METHOD OF PAYMENT
(see reverse for conditions)

Note: cheques not made out in sterling must be accompanied by the equivalent of £15.00

☐ Bank draft
☐ Cheque (Payable to Elektor Electronics Publishing)
☐ Giro transfer (Sort code: 94-162-33) (Account no: 00034992)
☐ Postal/money order
☐ VISA

Please send this order form to:
Elektor Electronics (Publishing)
P.O. Box 190
Tunbridge Wells TN5 7WY
ENGLAND

Yes, I am taking out an 18-month subscription to elektor electronics. On receipt of my payment I receive a free gift of my choice.*

My choice:
☐ 128 MB USB 2.0 Flash drive
☐ MP3 player with display (128 MB)

I would like:
☐ Standard Subscription (17 issues)
☐ Subscription-Plus (17 issues plus the Elektor Volume 2004 CD-ROM)

* Offer available to Subscribers who have not held a Subscription to Elektor Electronics in the last 12 months. Offer Subject to Availability. See reverse for rates and conditions.

METHOD OF PAYMENT
(see reverse for conditions)

Note: cheques not made out in sterling must be accompanied by the equivalent of £15.00

☐ Bank draft
☐ Cheque (Payable to Elektor Electronics Publishing)
☐ Giro transfer (Sort code: 94-162-33) (Account no: 00034992)
☐ Postal/money order
☐ VISA

Please send this order form to:
Worldwide Subscription Service Ltd.
Unit 4, Gibbs Reed Farm
Pashley Road
Ticehurst, nr. Wadhurst
East Sussex
ENGLAND TN5 7HE

Tel: (+44) (0)1580 200867
Fax: (+44) (0)1580 200866
Email: wwss@www.demon.co.uk
ORDERING INSTRUCTIONS, P&P CHARGES

Except in the USA and Canada, all orders, except for subscriptions (for which see below), must be sent BY POST OR FAX to our Tunbridge Wells address using the Order Form overleaf. On-line ordering: http://www.elektor-electronics.co.uk

Readers in the USA and Canada may (but are not obliged to) send orders, except for subscriptions (for which see below), to the USA address given on the order form. Please apply to Osta Colony Sound for applicable P&P charges. Please allow 4-6 weeks for delivery.

Orders placed on our Tunbridge Wells office must include P&P charges (Priority or Standard) as follows: UK £6.00, Europe £6.00 (Standard) or £7.00 (Priority), Outside Europe £6.00 (Standard) or £12.00 (Priority).

HOW TO PAY

Unless you have an approved credit account with us, all orders must be accompanied by the full payment, including postage and packing charges as stated above. Payment may be made by cheque drawn on a London clearing bank (but see note 4 below), Eurocheque, Eurocard, Mastercard or Eurocard VISA (secured by your credit card number). VISA, Access, Mastercard or Eurocard VISA (secured by your credit card number). The order must go to the credit card holder's address. Do not send cash through the mail. Cheques and postal orders should be made payable to "Elektor Electronics (Publishing)". Payment may also be made by direct transfer from a private or business Giro account to our Giro account No. 34-152-3801 by completing and sending to the National Giro Centre, in a National Giro postal paid envelope, a National Giro transfer/deposit form. Do not send Giro transfers directly to us (this will delay your order). If you live outside the UK, payment may also be made by Banker's sterling draft drawn on a London clearing bank. Eurocheque made out in pounds sterling (with holder's guarantee card number written on the back), or US or Canadian dollar cheque drawn on a US or Canadian bank. If you pay by Banker's sterling draft, US or Canadian dollar cheque, or by Eurocheque, your remittance MUST be communicated to the London clearing bank. Our banking details are:

NAT WEST PLC, 1 St James's Square, Wadhurst, East Sussex TN5 6EH, England. Our account number is 3512 8225.

Sorting Code 60 22 25. IBAN code: GB40 NWB K 026 15 3512 8225 BIC code: NWB KGB 2L

COMPONENTS

Components for projects appearing in Elektor Electronics are usually available from certain advertisers in this magazine. If difficulties in the supply of components is envisaged, a source will normally be advised in the article. Note, however, that the source(s) given is (are) not exclusive.

TERMS OF BUSINESS

Delivery: Although every effort will be made to dispatch your order within 2-3 weeks from receipt of your instructions, we cannot guarantee this timescale. Returns: Faulty goods or goods sent in error may be returned for replacement or refund, but not before obtaining our consent. All goods returned should be packed securely in a padded bag or box, enclosing a covering letter stating the dispatch note number if the goods are returned because of a mistake on our part, we will refund the return postage. Damaged goods: Claims for damaged goods must be received at our Tunbridge Wells office within 10 days (UK), 14 days (Europe) or 21 days (all other countries). Canceled orders: All canceled orders will be subject to a 10% handling charge with a minimum charge of £5.00. Patents: Patent protection may exist in respect of circuits, devices, components, and so on, described in our books and magazines. Elektor Electronics (Publishing) does not accept responsibility for liability for failure to identify such patent or other protection. Copyright: All drawings, photographs, articles, printed circuit boards, programmed integrated circuits, diskettes and software carriers published in our books and magazines (other than in third-party advertisements) are copyright and may not be reproduced or transmitted in any form or by any means, including photocopying and recording. In whole or in part, without the prior permission of Elektor Electronics (Publishing) in writing. Such written permission must also be obtained before any part of these publications is stored in a retrieval system of any nature. Notwithstanding the above, printed-circuit boards may be produced for private and personal use without prior permission. Limitation of liability: Elektor Electronics (Publishing) shall not be liable in contract, tort, or otherwise, for any loss or damage suffered by the purchaser, whoever or howsoever arising out of, or in connection with, the supply of goods or services by Elektor Electronics (Publishing) other than to supply goods as described on the contract of Elektor Electronics (Publishing) to refund the purchaser any money paid in respect of the goods. Law and question relating to the supply of goods and services by Elektor Electronics (Publishing) shall be determined in all respects by the laws of England.

January 2004

SUBSCRIPTION RATES

FROM JANUARY 2005 ISSUE

<table>
<thead>
<tr>
<th>United Kingdom</th>
<th>Standard</th>
<th>Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>£35.50</td>
<td>£46.00</td>
<td></td>
</tr>
<tr>
<td>Economy Mail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of the World (excluding Europe)</td>
<td>£51.30</td>
<td>£67.80</td>
</tr>
<tr>
<td>Priority Airmail</td>
<td>£52.50</td>
<td>£59.00</td>
</tr>
<tr>
<td>Europe & Eire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East, Africa, South Asia, Central & South America</td>
<td>£64.00</td>
<td>£70.50</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>£66.00</td>
<td>£72.50</td>
</tr>
<tr>
<td>Far East & Pacific Territories</td>
<td>£66.00</td>
<td>£72.50</td>
</tr>
<tr>
<td>Airfreight USA & Canada only</td>
<td>£68.00</td>
<td>£88.00</td>
</tr>
</tbody>
</table>

Payment should be made by:
- Cheque or bankers draft drawn on a London clearing bank (except in the USA and Canada — see below);
- US$ cheques drawn on a US or Canadian bank — only by subscribers in the USA or Canada.
- Direct transfer to our bank: HWT WEST PLC, 1 St James's Square, Wadhurst, East Sussex TN5 6EH.
- Our account number is 3512 8225. Sorting Code 60 22 25. BIC code: GB40 NWB K 026 15 3512 8225
- Postal order
- Credit card: VISA, ACCESS, EUROCARD, MasterCard, JCB or Electronic Switch.
- Transfer to our Giro account number 34 152 3801. Giro transfers should be made by completing and sending the appropriate transfer/deposit form to the National Giro Centre (UK) or to your national Giro Centre.

January 2004

SUBSCRIPTION RATES

FOR 18-MONTH SUBSCRIPTION

<table>
<thead>
<tr>
<th>United Kingdom</th>
<th>Standard</th>
<th>Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>£59.25</td>
<td>£65.00</td>
<td></td>
</tr>
<tr>
<td>Economy Mail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of the World (excluding Europe)</td>
<td>£76.95</td>
<td>£86.70</td>
</tr>
<tr>
<td>Priority Airmail</td>
<td>£84.75</td>
<td>£90.50</td>
</tr>
<tr>
<td>Europe & Eire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East, Africa, South Asia, Central & South America</td>
<td>£96.00</td>
<td>£105.75</td>
</tr>
<tr>
<td>Australia, New Zealand</td>
<td>£99.00</td>
<td>£108.75</td>
</tr>
<tr>
<td>Far East & Pacific Territories</td>
<td>£99.00</td>
<td>£108.75</td>
</tr>
<tr>
<td>Airfreight USA & Canada only</td>
<td>£132.00</td>
<td>£147.00</td>
</tr>
</tbody>
</table>

SUBSCRIPTION CONDITIONS

The standard subscription order period is twelve months. If a permanent change of address during the subscription period is required, the subscription must be cancelled by a separate order. Subscriptions will not be dispatched by a more expensive service, no extra charge will be made. Conversely, no refund will be made, nor expiry date extended, if a change of address allows the use of a cheaper service. Student applications, which qualify for a 20% (twenty per cent) reduction in current rates, must be supported by evidence of student status signed by the head of the college, school or university faculty. A standard Student Subscription costs £33.80, a Student Subscription-Plus costs £37.80 (UK only). Please note that new subscriptions take about four weeks from receipt of order to become effective. Canceled subscriptions will be subject to a charge of 25% (twenty-five per cent) of the full subscription price or £7.00, whichever is higher, plus the cost of any issues already dispatched. Subscriptions cannot be cancelled after they have run for six months or more.
PC Interfaces under Windows
PC Interfaces can be used for more than just the printer, mouse, modem and joystick! While it was relatively easy to directly access PC interfaces using a DOS computer, under Windows things are not all that simple. This book shows you how it can be done. In addition to exact, practically oriented descriptions of the traditional PC interfaces (what they do and how they are addressed via software), the authors describe the DIY construction and programming of a number of highly interesting circuits, all of which can be connected to the PC ports.

£25.95 (US$52.00)

308 Circuits
The 308 Circuits is the ninth in the 300 series of circuit design books, again contains a wide range of circuits, tips and design ideas. The book has been divided into sections, making it easy to find related subjects in a single category. Like its predecessors in the 300 series, 308 Circuits covers the following disciplines and interest fields: test & measurement, radio and television, power supplies and battery chargers, general interest, computers and microprocessors, circuit ideas and audio & hi-fi.

£18.20 (US$ 37.00)

Build your own Audio Valve Amplifiers
To many people the thermionic valve or electron tube is history. Build your own Audio Valve Amplifiers proves that the thermionic valve is making a comeback. This book contains, apart from construction projects for preamplifiers, power amplifiers, and two amplifiers for musical instruments, information on the operation of electron tubes, while the first chapter gives a short history of the valve.

£15.55 (US$31.00)

CD-ROM Audio Collection 2
A unique CD-ROM for the true audio lover, containing no fewer than 75 audio designs from the past five years volumes of Elektor electronics magazine. The articles on the CD-ROM cover test & measurement equipment, amplifiers, digital audio and loudspeaker technology. Highlights include the Crescendo Millennium Edition, Audio-DAC 2000, Audio-ADC 2000 and the IR-S-PIDF Transmitter and Receiver. Using the included Acrobat Reader you are able to browse the articles on your computer, as well as print texts, circuit diagrams and PCB layouts.

£12.05 (US$ 21.25)

Micro Web Server for Internet and Intranet
control and regulation via the Internet

Remote measurement and control is possible via the Internet. Unfortunately, web servers usually sit in large, humming grey cabinets. That's not the ideal solution for keeping an eye on your refrigerator, coffee machine or central heating system. The Elektor Electronics Micro Web Server provides an alternative. Our incredibly popular MSC1210 microcontroller board (also known as 'Precision Measurement Central') now provides network and Internet connectivity, allowing the processor to publish its own data pages onto the web. The article describes a temperature logger allowing the user to enter, via the Internet, temperature limits and an email alarm address. The Micro Web Server can also switch network ports from an Internet-connected PC, literally anywhere on the globe. Now available:

- MSC1210 board (assembled and tested) £69.00 (US$112.50)
- Network extension (assembled and tested) £41.95 (US$73.95)
- Combined package (incl. software and all related Elektor Electronics articles on CD-ROM) £103.50 (US$184.95)
PROTEUS
The Complete Electronics Design System

Schematic & PCB Layout
- Powerful & flexible schematic capture.
- Auto-component placement and rip-up/retry PCB routing.
- Polygonal gridless ground planes.
- Libraries of over 8000 schematic and 1000 PCB parts.
- Bill of materials, DRC reports and much more.

Mixed Mode SPICE Circuit Simulation
- Berkeley SPICE3F5 simulator with custom extensions for true mixed mode and interactive simulation.
- 6 virtual instruments and 14 graph based analysis types.
- 6000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers’ SPICE models.

Proteus VSM - Co-simulation and debugging for popular Micro-controllers
- Supports PIC, AVR, 8051, and BASIC STAMP micro-controllers.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Compatible with popular compilers and assemblers from Microchip, Crownhill, IAR, Keil, and others.

NEW ELECTRA
SHAPE BASED AUTOROUTER NOW AVAILABLE

Tel: 01756 753440
Fax: 01756 752857
www.labcenter.co.uk
info@labcenter.co.uk